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Problem Definition & Basic Assumptions

Formulation of (Bayesian) Risk

e Minimization of Bayesian Risk: Likelihood Ratio Test (LRT)

LRT Special Cases: Maximum Aposteriori Probability
(MAP) Rule
o Maximum Likelihood (ML)

Example
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Binary Hypothesis Testing: Problem Definition

Given a collection of measurements y € ), find optimal decision
function 0(y) that splits observation space Y in two disjoint
regions Yy, Vi:

5(y) = 0, under hypothesis Hy (i.e., y € M) (1)
Y= 1, under hypothesis H; (i.e., y € J1)
where hypothesis 0 and hypothesis 1 are denoted by Hy, Hy,

respectively.
Vector y denotes a collection of measurements.

Continuous case: fy |y, (y|H;), j € {0,1}, i.e., conditional
probability density function (pdf) is known and

Ty, (Y1 Ho) # fya, (YIH1).

Discrete case: Pr(y|H;), j € {0,1}, i.e., conditional
probability mass function (pmf) is known and
Pr(y|Ho) # Pr(y|H1).

Priors g 2 pr (Hp)=1—1m1, m 2 pr (Hy) are known.
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Binary Hypothesis Testing: Problem Definition

> Given a collection of measurements y € ), find optimal decision
function d(y) that splits observation space Y in two disjoint
regions Yy, Vi:

0, under hypothesis Hy (i.e., y € ),
() = { 0 SR

1, under hypothesis H; (i.e., y € V1)

where hypothesis 0 and hypothesis 1 are denoted by Hy, Hy,
respectively.

» We need an optimality criterion!

» Bayes comes to help: all uncertainties are quantifiable, all costs
and benefits of decision can be measured!
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Formulation of (Bayesian) Risk
» Define cost Cj; of deciding that H; holds, when hypothesis H; is
true, i,j € {0,1}.

» Define
Pr(é(y) = i|H;) =

fyeyi fy\Hj (y|Hj) dy, (continuous case) (

3)
Zyeyi Pr (y|Hj) . (discrete case)

éﬁ@€%mﬁ={

» We are ready to define the conditional Bayesian Risk R (-|-) for
decision rule 6(y) under hypothesis H;:

R(3(y)[Hy) = Cy; Pr(d(y) = 1[H;) + Co; Pr(é(y) = 0|Hj)

1
=3¢y Pr(3(y) = ilH)). W
1=0
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Formulation of (Bayesian) Risk

» Conditional Bayesian Risk R (-|-) for decision rule §(y) under

hypothesis H;:

R(S(y)|H;) =Y Cyj Pr(5(y) = i|H;).
=0

» Thus, the average unconditional Bayesian cost of decision rule

d(y) follows:

R(5(y)) = R(6(y)|Ho) Pr(Ho) + R(6(y)[H1) Pr(H:)
= R(5(y)|Ho) mo + R(6(y)|H1) m

(5)
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Formulation of (Bayesian) Risk

» Exploiting the fact that Yy UY; =Y and Yy N Yy = 0:
Pr(3ly) = O/H,) + Pr(d(y) = 1/, =1 & (10)
Pr(y € Jo|H;) =1—Pr(y € V1|H;) (11)

> Average Bayesian cost of decision rule §(y):

1 1
=Y > m Cy Pr((y) = ilH;) (12)
i=0 j=0
1 1
=3 7 Ci; Pr(y € V;|Hj) (13)
7=03=0

1
:Z’frj Coj Pr(y€y0|H0)+7rj Clj Pr(y€y1|Hj) (14)

1 1
1
= > 7 Coj+ Y 75 (Cij — Coj) Pr(y € Vi|Hj) (15)

Jj=0 Jj=0
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Minimization of Bayesian Risk

> Average Bayesian cost (Bayesian Risk) of decision rule §(y):
1 1
R(3(y)) = m Coj+ Y _m; (C1; — Co;) Pr(y € Vi|H;) (16)
j=0 7=0

» Notice that the first sum is independent of the measurement
data y. The optimal decision rule should perform the following
minimization:

min R(3(y)) (17)

» Two cases: y continuous or discrete (solution will be found the
same!).
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Minimization of Bayesian Risk

» Continuous case: Pr(y € Vi|H;) = fyeyl Ty, (yIHj) dy,

» Bayesian Risk of decision rule 6(y):

1 1
R(5(y)) =Y _m; Coj + Y _m; (C1j — Coy) / fyim; (vIHj) dy
7=0 3=0 yeEVL
1 1
=> " m Cy +/ > wi (Chj = Coj) fyjm, (yHj) dy (18)
=0 yeED =0

» Remember that d(y) controls what data y is allocated to Yy and
what data to )p. From Eq. (18), R(4(y)) is minimized when
then integrand of (18) is minimized (i.e., negative or zero):

6p(y) = arg {}giyr)l R(s(y)) &

1
select ) : {y ey: Zﬂj (Clj — COj)fy|Hj (y|H]) < O} (19)

=0
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Minimization of Bayesian Risk

» Discete case: Pr(y € J1|H;) = Zyeyl Pr(y|H;),

» Bayesian Risk of decision rule 6(y):

RO() =3 7 Cog+ Yom (Cy = Coy) Y Pr(y|H))

yeEW

1 1
=> 7 Coj+ > Y _m (Cij—Coj)Pr(y|H;)dy  (20)
7=0

yeY1 j=0

» Similarly to the continuous case, R(6(y)) is minimized when
then integrand of (20) is minimized (i.e., negative or zero):

6p(y) = arg ggiyr)l R(é(y)) &

1
select Vi : VAS y: Z?Tj (Clj — ng) Pr (y|HJ) <0 (21)
=0
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Minimization of Bayesian Risk

» Define likelihood ratio (LR) for continuous or discrete case:

L(y)

_ fy|H1 (Y|H1)
fyiHo (Y1 Ho)

P H
(continuous case), L(y) = w(diserete case).

Pr (y|Ho)

» We can safely assume that the LR is finite positive for all cases
of interest (see below):

>

>

LR numerator and denominator both positive: LRT finite
positive.

LR numerator and denominator both zero: this is
impossible, since in that case y ¢ ) (and we have also
assumed that Pr (y|H;) # Pr(y|Hyp)).

either numerator or denominator (only one of the two) is
zero; if numerator is zero then that particular y cannot
occur under Hy; similarly, if denominator is zero then that
y cannot occur under Hj.
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Minimization of Bayesian Risk: Likelihood Ratio Test

» We further assume that Cy; > Cqq, i.e., the cost of wrong
decision is strictly higher than the cost of correct decision.

» Continuous case:

1
select Y1 : (y€eY: Z'/Tj (Cyj — COj)fy\Hj (ylH;) <0, =
j=0
1

H
= Zﬂj (Crj — Coj) fyim, (yIH;) <0 (22)
=0
Hy
& mo (Cro — Coo) fym, (YIHo) < =71 (Cr1 — Cor) fyjm, (Y[H1)

(Cor—C11)>0 fy|m, (Y[H1) Hi Ciop— Coo mo &
= > — =T
Ty, (Y1Ho) — Co1 — Ci1 m

s Ly)>7 (24)

(23)
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Minimization of Bayesian Risk: Likelihood Ratio Test

» Continuous case:

o fyia (yIHy) Hy Cro — Coo mo &

L) =% i GHy) = Cor—Cui m (25)
e Lly) 27 (26)

Notice that the values of y where the integrand goes to zero (or
equivalently the (LR) ratio is equal to 7) do not matter; some
can be allocated to )y and some (or none) to V).

» Discrete case - with similar reasoning, minimization in Eq. (21)
offers the following LR test:

A Pr(y|Hy) H Cig— Coo mo &
L = > _ =
&) Pr(y|Ho) = Co1 —Ci1 m 4

(V&S

Ly >r (28)



Minimization of Bayesian Risk: Likelihood Ratio Test

» Thus, optimum Bayesian decision rule é5 (y), i.e., rule that
minimizes Bayes risk, can be written as follows:

)1, if L(y) > T,
o5 y) = {o, it L(y) <, (29)

or more compactly,

Liy) = 7. (30)
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Likelihood Ratio Test (LRT) & Symmetric Costs

> Set symmetric costs, i.e., 1 for (any) erroneous detection and 0
for (any) correct decision:

Oijzl—(sij:{?’ ’;Jf (31)
b 1 j’

where d;; denotes the Kronecker delta. For such costs, Bayesian
Risk is equivalent to probability of error! From Eq. (4):

R(6(y)[H;) = Cy; Pr(6(y) = 1|H;) + Co; Pr(d(y) = 0|H;) =
R(3(y)[Ho) = Cho Pr(d(y) = 1|Ho) + Coo Pr(6(y) = 0[Ho)
= Pr(6(y) = 1|Hy) = Pr(error|Hyp). (32)
R(6(y)[H1) = C11 Pr(6(y) = 1[H1) + Cor Pr(6(y) = 0[H1)
= Pr(é(y) = 0|Hy) = Pr(error|Hy) = (33)
R(3(y)) = R(3(y)|Ho) mo + R(3(y)|Hi1) m (34)

= Pr(error|Hy) 7o + Pr(error|H;) m = Pr(error).
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LRT & Symmetric Costs: Maximum Aposteriori Probability (MAP) Rule

> Set symmetric costs C; = 1 — §;5, as before. For such costs,
Bayesian Risk is equivalent to probability of error!

» Continuous case:’

Hy) H - —
L(y o Sy (Y[H) S Cro—Coo m _ (1-0) m _ mo

 fyln, (y[Ho) Coo—Cnm (1-0m m
H,
& fyia, (YIHL) 710 > fy1m, (Y[Ho) mo (35)
fyim, (YIH1) ™m0 Hy fyim, (Y1 Ho) 7o
& > 36
Iy (¥) Iy (y) (36)
Bayes(*) H,
< " Pr(Hyly) > Pr(Holy) MAP Rul) (37)

» Discrete case: same rule as above!

1(*) holds because the Bayes property holds for continuous distributions
as well.
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LRT, Symmetric Costs and Equal Priors: Maximum Likelihood (ML) Rule

> Set symmetric costs C;; = 1 — §;5, as before and equal priors
mo = m1 (special MAP case):

» Continuous case:

Sy, (Y[ H1) m 8 fy\#, (¥|Ho) 7o

> (38)
Iy (¥) Iy ()
H,
= fyja (YIH1) > fyim, (Y|Ho) ML Rute) (39)
» Discrete case - same derivation as above:
Hy
Pr(y|H1) > Pr(y|Hp) (ML Rule) (40)

® MAP and ML minimize Bayesian risk and probability of error.
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Simple exampl

» Assume y, = mo + v} under hypothesis Hg and yp = m1 + v, under hypothesis Hq,
where m1 > mg and variables {vy}, k € {1,2,..., M} are derived from white Gaussian
noise (WGN), i.e. v; L vj,4 # j (statistically independent) and vy, ~ N(O, o2). Find
optimal decision rule that detects which hypothesis holds.

» Solution: Affine transformation of Gaussian is also Gaussian:

(41)

N(mg,o?), under Hy
Yk N(ml,az), under Hj

Since {vy } are independent, observations {yy} are independent and the product of their
conditional pdfs offers the conditional probability density of each hypothesis and their

ratio:
M M )
_ B B 1 (v —mj)
fy\Hj()'—[m y2 --~yMHHj)—nyk\Hj(yk|Hj)—HmeXP [— Py }
k=1 k=1
M
1 1 R
= —————exp *fZ(yk*m_’) .
(27ra2)% |: 202 ’ ]
k=1
Fyipry (Y1) S -
& Iy YT .t E )24 Z — mg)?
L(y) Ty 110 v 1H0) 7exp[ Py (v =m1)” + — (yx —mo) ]
k=1 k=1
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L(y)

M

M
_ 1 2 1 2
= exp [7 Pyl Z(yk —m1)” + 5oz Z(yk —mo) ]
k=1

k=1
M M
1 2 2 1 2 2
=exp | - 5 (yk—leyk+m1)+72 (yk—2m0yk+m0)
20 20
=1 k=1
M M M M
mi 1 2 mo 1 P
=er[+ 5 ) wogm ) i) gz ) mi
k=1 k=1 k=1 k=1
M M M
[+ mi — mg 2 : 1 2 : 2, 1 § 2]
= ex —_— _ = m = m
P o2 Yk 202 1 202 0
k=1 k=1 k=1
M
mi — mgq 1 2 1 P
:expl:-l»ig Yy — —=Mm +—]\ij|
o2 k 202 L 202 0
k=1
M

_EXP[_M(mffmg)_‘_mlfmoj :y]
202 o2 k

k=

(42)

(43)

(44)

(45)

(46)

(47)



M
M(m2—m2) mi1 — mo
L = exp [ — 1 0 + ]
) 202 e E Yk
k=1
Hq Hy
L(y) > 7 & In(L(y) > In(r) &
5 5 M
M (m7 —m mi] —m Hy
S Mo m) °Y w2 e =
202 o2
k=1
M H 2 2
mi1 — mo 1 M (m7—m7) mq>mq
om0 E up > A0 () TS
o2 202
k=1
M H 2
1 1 (m1+mo) o
+ = E yp > + In(7),
M 2 M(my — mo)
k=1
where we used the fact that (m1 — mg) > 0.
M
® The left-hand side of the above inequality, i.e., the term ﬁ Zk*l Yk, is called the
sufficient statistic. o
°

Observe that the sufficient statistic is the sample mean for M — 400, under each
hypothesis.

(48)

(49)

(50)

(51)

(52)
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@ One more simple (binary hypothesis testing) example
e Common distributions for Sufficient Statistics

e Gaussian vectors (or jointly Gaussian random variables)
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Another simple example

P Assume yj = v, where v, ~ N (0, 0g) under hypothesis Hyg and yj, = v}, where

v ~ N(0, a%) under hypothesis Hy, with a% > ag and variables {vg },

k€ {1,2,..., M} are derived from white Gaussian noise (WGN), i.e. v; L v;,i # j
(statistically independent) and vy, is Gaussian. Find optimal decision rule that detects
which hypothesis holds.

Notice that in this example, the variance of measurements changes per hypothesis (and
not the mean, as in the previous example).

Solution: Affine transformation of Gaussian is also Gaussian:

N(O,dg), under Hg
Yk ~ (1)
,'\/'(O,o'rf)7 under Hj
Since {v } are independent, observations {yj} are independent and the product of their

conditional pdfs offers the conditional probability density of each hypothesis and their
ratio, as follows (with j € {0, 1}):

2
Yk
Iy, (y =y v2 - ymIIH; )—ny 11 (W [H; )—H exp |——5
’ e k ,/27ra [ 20'].]
M
1 1 R
EEEAS |

2y72
(27“71') k=1

M
o fyiay (vIHLD) ! 1 1 2
L) fyIHo (y|Ho) B 0'7M P [ ; - Q Zyk]

1>
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L ! 1 1 s
(y) ——U{M exp [ 7208 ey yk]

Hy Hy
Lly) 2 7 In(L(y)) 2 In(7) &

2 2 M
H
o1 o] — O 1
— MIn | — +%E yﬁZln(T)@
oo 20001
k

M
1 U%—Jg 5 H1 1 o1 U%>”g
_— = Yy = — In(r)+In| — &
M 20202 M oo

071
k=1
M H 2 _2

1 1 2080 1 o1
— yi > % — In(7) +1n s
M o7 — o5 M oo

where we used the fact in Eq. (6) that (Cf% = 0'(2]) > 0.

M
® In this case, the sufficient statistic is the term -t y2.
M 1Y%

(2)

(3)

(4)

(5)

(6)

Observe that the sufficient statistic is the sample variance (since Elyy] = 0) for
M — 400, under each hypothesis (and not the sample mean, as in the previous
example).



M
AL 5 Hi 20202 1 o1
S = — > —_— — In(7) +In . 7
v; E Vi 2 53 | 37 (D - (7
k=1

1 0

Additional remarks:

1.

Under Hj, for limps 400 S = 0']2-7 j € {0,1}.

i 1 i i 2 . 7578 712 2
Using 1 — - < In(z) < z — 1, it can be easily shown that o < —5—5 In (—) <oy
x 71=9% a0
2.2 2.2
2050 ocfo 2
01 1 g1 0°1 o1
For M — +o0, p (M ln('r)-&-ln(a)) ﬁ;%i—ogln (%) .

M 2
Under hypothesis Hj, NIQS = E o1 (z—k) = sum of independent squared zero-mean
o = J

J

Gaussians of unit variance: Under hypothesis Hj, M2S corresponds to Chi-squared
o

J
distribution with M degrees of freedom [will explain it subsequently].



Useful distributions

> = Zij\il 22,2 ~ N(0,1) and {z;} independent, identically
distributed (i.i.d.):
» 2 distributed according to the Chi-squared distribution with
M degrees of freedom and pdf as follows:

1 M_q) _,
fz(z):WZ(2 1)6 /QU(Z), (8)

with u(z) the step function (i.e., u(z) = 1 for z > 0 and zero
otherwise) and I'(z) = 0+°° t*~le~tdt Euler’s gamma
function, defined everywhere apart from non-positive
integers (and I'(n) = (n — 1)! for any positive integer n).

> E[z] = M, o2 2 variance of 2 = var(z) = 2M.

» Special case - M = 2: exponential distribution, with p.d.f as
follows (since I'(M =2/2) =T(1) =0! = 1):

£(2) = %6—2/2 u(z). )
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Useful distributions

» In general, the pdf of a random variable according to the
exponential distribution with parameter A > 0 is given by:

f2(2) = A e~ M u(z), (10)

with E[z] = 1/\ and o2 2 var(z) = 1/A2.

» This is equivalent to z = 22 + 22, with 21, 2o independent
and identically distributed according to N (0,0?) and
E[z] = 1/\ = 202

> For the special case of y = \/m, the Rayleigh pdf

occurs:

202

2
1) = 25 e (-2 ) o) ()
with E[y] = o/7/2 and 07 = var(y) = omy2,
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Useful distributions

> Set z =32 22 2 ~ N(0,1) and {z;} i.i.d; as explained, z
is distributed according to the Chi-squared distribution
with 2M degrees of freedom.

» What is the distribution of z =6z (6 > 0)7

» 1z can be viewed as the sum of M i.i.d. random variables
distributed each according to the exponential distribution
with parameter A = 1/(20).

» for any differentiable and invertible function z = g(z), we
do know that the new pdf can be found as follows:

_ [2(2)
9’ (2)]

fo() (12)

=91 (x)

and thus,

B f2(2) B 1 - T
fo(z) = 6 |—o = @OTTQGD M= exp (—%)u(w)y

which corresponds to the Gamma distribution (I'(M, 26)),
with parameters M, 20 and E[x] = 2M0, var(x) = 4M6?.
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Useful distributions

> Set z =32 22 2 ~ N(0,1) and {z;} i.i.d; as explained, z
is distributed according to the Chi-squared distribution
with 2M degrees of freedom.

» The pdf of z = 0z (0 > 0) is the pdf of the sum of M i.i.d.
exponentials:

1 x
R 0.7 g §) _
which corresponds, as shown, to the Gamma distribution

['(M,20), with parameters M, 26 and E[x] = 2M0,
var(z) = 4M6?.
» Other distributions of the exponential family to remember:
> (discrete) Poisson: Pr(n) = 2 €*, n € N, E[n] = A = var(n).
» (continuous) Laplace: f,(z;p, ) = %exp (—‘w;ﬁ“l),
E[x] = p, var(z) = 252
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Gaussian vectors (or jointly Gaussian random variables)

> Let x = [x1 o3 ... xp|Y, where 21, 2o, ..., z)s are real.
Vector x is Gaussian, or equivalently, x1 o ... xps are
jointly Gaussian, if and only if the pdf of x (or the joint
pdf of x1 @9 ... ) is given as follows:

Covariance form:

x:;ex —lx—mTE_lx—m
) = e { - )2 -

(13)
denoted as x ~ N (m, X), with mean m 2 E[x], covariance

matrix £ 2 E [(x —m)(x — m)T} and |X| is the
determinant of 3.
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Gaussian vectors (or jointly Gaussian random variables)

» Let x = [x1 o2 ... xp]", where z1, 2o, ..., z)s are real.
Vector x is Gaussian, or equivalently, x1 o ... xps are
jointly Gaussian, if and only if the pdf of x (or the joint
pdf of 1 x2 ... xps) is given as follows:

Information form:

fx(x) ox exp {—;XTJX + th} , (14)

denoted as x ~ N ~1(h,J), with potential vector h = Jm
and information (or precision) matrix J = 371,
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Gaussian vector properties

» Let x (real) Gaussian vector. The following hold:
» Moment generating function (MGF) My(ju):

My (ju) 2E {ej“Tx} = exp {juTm - ;uTZu} . (15)

» All linear combinations of elements of x are scalar Gaussian
random variables: y = aTx is Gaussian for all deterministic
a.

» There exists deterministic matrix A, deterministic vector
vector b and random vector v of i.i.d. N'(0,1) entries, such
that x = Av + b.

> Affine transformation is also Gaussian, i.e., for any
deterministic matrix A and deterministic vector b, random
vector y = Ax + b is Gaussian, according to
N (Am + b, AEAT). [Simple proof from MGF]
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Gaussian vector properties

» Let x = [y" 2T (real) Gaussian vector, where y, z are
(real) vectors of appropriate dimensions. The following
properties hold:

>

VVYVYYVYY

y is Gaussian.

z is Gaussian.

y given z is Gaussian.

z given y is Gaussian.

E[y|z] = affine transformation of z = Gaussian.

Ely zT] = E[y] E[z]T = y L z, i.e., jointly Gaussian and
uncorrelated results to independent!

» However, even if y is Gaussian and z is Gaussian,
x = [y' z']T may not be Gaussian. In other words, y and
z may not be necessarily jointly Gaussian!
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» Counterexample: let x, y jointly Gaussian, zero mean,
scalar random variables with joint pdf as follows:

1 1 (2% 92
= —_— 1
Pay(T,y) 2,0, exp{ 9 (Ug + 02> }7 (16)

Y

which corresponds to the Gaussian vector [z y]T, with

2
T o 0
m=[0 0] andE——lO U%].

> Clearly py(y) = [155 pay(@,y)dz = 2 [ poy (2, y)da
corresponding to N'(0, o).
> Set the following non-Gaussian pdf:

ﬁx,y(xvy) = { 7TCfif’y exp{—% (% + (y,%)}, %fm y >0,

In this case, for y > 0, [T p, ,(z,y)dz =

f0+00 ﬁx,y(l'a y)dm = 2 O+OO ﬁx,y(% y)diﬁ = py(y)» i'e'a
(GGaussian.
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@ Probabilities that fully characterise a test: Pp vs Pp

@ Neyman-Pearson Test
o Derivation
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Probability of Detection vs Probability of False Alarm

» There are two probability metrics for test d(y) that fully

characterise a binary hypothesis testing problem
(as well as any binary classifier):

» Probability of detection Pp:
A
Pp(0) = Sy, (y[Hi)dy. (1)
RZ!
Complementary to the above, Probabilty of a miss is

A
defined as Pni(6) =1~ Pp(9) = [}, fym, (y[Hi)dy.
» Probability of false alarm Pg:

Pr(5) 2 /y fyito (¥ [Ho)dy. 2)

> Notice that both are calculated over ), i.e., for space of
measurements where decision is §(y) = 1.

» Think of a radar system: false alarm is when the radar
reports an airplane is coming, when it is not.
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Probability of Detection vs Probability of False Alarm
» Remember the Bayes conditional risk:
R(6(y)[H;) = C1; Pr(d(y) = 1|H;) + Co; Pr(6(y) = 0[H;)
Thus,
R(6(y)[Ho) = C1o Pr(d(y) = 1{Ho) + Coo Pr(d(y) = 0[Ho)
= CIO PF + C(]O (1 — PF) (3)
and similarly,
R(6(y)[H1) = Cu1 Pr(6(y) = 1|Hy) + Cor Pr(6(y) = 0[Hy)
= 011 PD + 001 (1 — PD). (4)
» Thus, the (unconditional) Bayes risk of test d is fully
characterised by the pair (Pg, Pp) of specific test §:
R(0) = R(6(y)[Ho) mo + R(6(y)[H1) m1
= Coo mo + Co1 m1 + 7o (C1r0 — Coo) Pr + 71 (C11 — Co1) Pp
(5)
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Probability of Detection vs Probability of False Alarm

» The (unconditional) Bayes risk of test ¢ is fully
characterised by the pair (Pg, Pp) of specific test §:

R(0) = R(5(y)[Ho) mo + R(6(y)[H1) m1
= Coo mo + Co1 71 + 70 (Cr0 — Coo) Pr + m1 (C11 — Co1) Pp
(6)
» Ideally, we would like to have a test (or a binary classifier)
with (Pp,Pp) = (0,1). However, this is not feasible!

» Next lecture will offer the feasible pairs (Pr, Pp), as well as
properties of the boundary between feasible and
non-feasible pairs for all tests!

» Boundary between feasible and non-feasiible tests: receiver
operating characteristic (ROC) [next lecture].
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Neyman-Pearson Test

» Problem definition: among the tests that bound false alarm
probability, find the test that maximises probability of
detection. The formulation is given below:

onp = arg max Pp(d) (7)

D, = {all tests 0 : Pp(d) < a}

» The problem could be also formulated with bounded
probability of detection and minimised probability of false
alarm.
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Neyman-Pearson Test Derivation

» Constrained optimization problem: we need to set
Lagrangian and KKT condition(s).
» Lagrangian L(:,-) for Lagrange multiplier A > 0:

L(0,A) = Pp(d) + A (o — Pr(6))
—xat [ [y 1) = Ay, (Vi) dy - (8)
V1
» KKT condition (A > 0):
A(a—Pr(4) =0 9)

» Optimal test maximizes Lagrangian in Eq. (10) AND
also satisfies KKT condition in Eq. (9).
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Neyman-Pearson Test Derivation

» Maximization of Lagrangian L(J, A)(A > 0):

L6.0) = et [ [Fy (51H) = X Sy (vIHO)| dy (10)

» if y € )y then [fy|H1(y|H1) — /\fy|H0(y|H0)] > 0, otherwise
the Lagrangian is not maximized.

» Equivalently, if y € ), then
[fym, (¥[H1) = A fy, (y/Ho)] < 0 and that particular y is
not taken into account in Eq. (10).

> for any y with [fyu, (y/H1) — A fym, (y|Ho)] = 0, what
decision should we adopt?

» Thus, maximization of the Lagrangian results to testing
the sign of [ fyp, (y[H1) = A fyjm, (v[Ho)]
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Neyman-Pearson Test Derivation

> Maximization of the Lagrangian results to testing the sign
of [fy|Hl(y|H1) = A fyHo (y|H0)}. Thus, optimal test for
given A > 0 follows:

1, Sy (YH1) = A fyjm, (y|Ho) > 0

i(y) =10, fyi (¥[H1) = A fym, (y[Ho) <0
0or 1 (TBD), fym, (¥y[H1) = A fym, (y/Ho) = 0.
(11)

> Setting the likelihood ratio
A . .
L(y) = fym, (y[H1)/ fym, (yIHo), Eq. (11) is equivalent to:

10/ 24



Neyman-Pearson Test Derivation

» Maximization of the Lagrangian results to the following
optimal test for given A > O:

L, L(y) > A,
d(y) =10, L(y) < A, (13)
Oorl (TBD), L(y)=A

» We need to find out A and decision for L(y) = A.
> We define the following conditional cumulative distribution
function (cdf):

F, (I[Ho) £ Pr(L(y) < |Ho). (14)

> As any cdf, the above should be:
1. right-continuous,
2. non-decreasing with increasing [,
3. 0 for I - —oo and
4. 1 for | — 4o0.
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Neyman-Pearson Test Derivation
> Any cdf is "right-continuous": check figure below!

Fi, (IHo) £ Pr (L(y) < I|Ho) . (15)

» As any cdf, the above should be:
1. right-continuous,
2. non-decreasing with increasing [,
3. 0 for I - —oo and
4. 1 for | — +oo0.

A
F (! [Ho) /
FlH [
l-og [ i

FL(As[Hp)
1-a,

l-a; |-

v

M=0 A A i

Figure 1: Example cdf with right-continuity.
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Neyman-Pearson Test Derivation

A
Fu(7 [Hp)

Fi(As|Ho)

» Three cases of likelihood ratio threshold A occur,
depending on value of 1 — v vs F, (I = 0|Hp).

» Reminder: « is the upper bound of Pp.
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Neyman-Pearson Test Derivation

A
Fu(I'[Ho) /
Fuls[Ho)p - oo

1-a, :

FLlhalHo) [
1-a,

l-op |-

A=0 A A !

> CaseI:1—a<FL(l:0|H0)éfo(l)l—f0<a:
> set A=0and d(y) =0 for L(y) = A =0, i.e.,

)1, L(y) > =0,
o) = {o, Liy) <A=0. (16)

» KTT A (a — Pp) = 0 is satisfied for A = 0.
> Pp=1-Pr(d(y) =0[Hp) =1—Pr(L(y) < 0[Ho) =
1 — fo < a = probability of false alarm is bounded.
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Neyman-Pearson Test Derivation

A
Fu(l [Ho) //
Fuls[Ho)p oo

1-04 ;

FL(s[Ho) -~
1-a,

l-a; |-

A=0 A A !

» Case II: 1 — a > Fy, (I = 0[Hp) 2 fo and A\* is in the range
of Fy, ({|Hyp), i.e., there is A* such that Fi, (A\*|Hp) =1 — a.
> set A= )\* and 6(y) =0 for L(y) = \*, i.e,

)1, L(y) > A%,
é(y) = {07 Liy) < \°. (17)
> Pp=1-Pr(d(y) =0[Hp) =1—Pr(L(y) < A\|Hp) =

1-1-a)=a.
» KTT A (a — Pr) = 0 is satisfied for A = \*.
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Neyman-Pearson Test Derivation

A
Fu(l [Ho) //
Fus[Ho) |-

O ;

FL(s[Ho) -~
1-a,

l-a; |-

A=0 A A !

> Case IIl: 1 — a > F, (I = 0[Hy) 2 fo and \* is NOT in the
range of Fy, (I|Hyp), i.e., F[, (\|Hp) < 1 — o < F1, (A*[Hyp).
» set A= \* and §(y) =0 for L(y) = A, ie.,

1, L(y) >\,

0, L(y) <A~ (18)

A
6(y) =0 (y) = {
> Pp=1—Pr(d(y) =0[Ho) =1—Pr(L(y) < A"[Hp) =
1 — FL (A*[Hp) < a.
» KTT A (o — Pyp) = 0 is NOT satisfied!
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Neyman-Pearson Test Derivation

A
Fu(l [Ho) //
Fus[Ho) |-

O ;

FL(s[Ho) -~
1-a,

l-a; |-

A=0 A A !

> Case IIl: 1 — a > F, (I = 0[Hy) 2 fo and \* is NOT in the

range of Fy, (I|Hyp), i.e., F[, (\|Hp) < 1 — o < F1, (A*[Hyp).

> set A= X and é(y) =1 for L(y) = A, ie.,
N
0(y) = dua-(y) = { (19)

> Pp=1—"Pr(d(y) =0[Ho) =1—Pr(L(y) < A*[Ho) =

1 — F (A\*[Hp) > a.
» KTT A (o — Pyp) = 0 is NOT satisfied!
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Neyman-Pearson Test Derivation

A
FulZ [Ho)

Fu(As[Ho)
1-a;

FL(As[Ho)
1-a,

l-oy |-

A=0 AN /

> Case IIl: 1 — a > F, (I = 0[Hy) 2 fo and \* is NOT in the
range of Fy, (I|Hyp), i.e., F[, (A*|Hp) < 1 — a < Fy, (A*[Hp).
So far:
> Test 5[,7,\* (y) with Pg (5L,)\*) < .
» Test dy,a+(y) with Pr (dpa+) > a.
» KTT A (a — Pp) = 0 requires exactly Pr = a.

» Solution?
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Neyman-Pearson Test Derivation

A
Fu(Z [Ho) /
FlhslHo)| -
P ;

F1(As[Hp)
1-a,

l-a; |-

\=0 Ao !

> Case IIL: 1 — a > F, (I = 0[Hy) 2 fo and \* is NOT in the
range of Fy, (I|Hyp), i.e., F[, (A\|Hp) < 1 —a < Fy, (A*[Hp).

» Solution: set A = A* and randomize decision for L(y) = A:

Oua» ith probabilit
5(y) :{ ua-(y), with probability p, (20)

orx~(y), with probability 1 — p,
» Set 0 < p < 1 such that Pr = o (and KKT is thus satisfied).
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Neyman-Pearson Test Derivation

A
Fu(7 [Ho) /
FlhslHo)|
e ;

FL(As[Ho)
1-a,

1oy |-

>
>

A=0 AN /

> Case IIl: 1 — a > F, (I = 0[Ho) 2 fo and \* is NOT in the
range of Fy, (I|Hp), i.e., F[, (\*|Ho) < 1 —a < F, (A\*[Ho).

> Solution: set A = A\* and randomize decision for L(y) = A:

du-(y), with probability p,
5(y) = : o (21)
orx(y), with probability 1 — p,
Fr, (A*|Hp) — (1 —
LAH) — (A=) (22)

~ R (\[Ho) — Fy, (\[Ho)

» Such 0 < p < 1 guarantees Pp = «.
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Neyman-Pearson Test Derivation
> Case ITI: 1 — a > FY, (1 = 0]Hy) = fo and A* is NOT in the
range of Fy, (I|Hyp), i.e., F[, (A\*|Hp) < 1 —a < Fy, (A*[Hp).
» Solution: set A = A\* and randomize decision for L(y) = A:

5(y) = dux-(y), with probability p, (23)
B 0r+(y), with probability 1 — p,
Fr (\*|Hp) — (1 —
LVH) —( =) oo

T R (A [H) — Fy (M [Ho)

» Such p guarantees Pp = a.
Proof:

Pp = pPr (0ua+) + (1 —p) Pr (dr,2+) (25)
=p (1—F; (\[Ho)) + (1 —p) (1 —FL (\"[Ho)) (26)
=1—F, (M Hp) +p (FL (A"|Hp) — F{ ()\*|HO)) (27)
=1-—F, (A"|Ho) + FL, (A\*[Hp) — (1 — @) (28)

(29)

=«
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Neyman-Pearson Test

> Neyman-Pearson-optimal detector is likelihood ratio test
(LRT)!

» As already mentioned, we could have minimized Pg subject
to bounded Pp.

» Next lecture: feasible points (Pg, Pp) for any test!
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Receiver Operating Characteristic (ROC)

ROC Properties

Remarks

Examples
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ROC definition

» Remember the two probability metrics that fully
characterise a test 6(y) (as well as any binary classifier):

» Prob. of detection Pp and prob. of false alarm Pg:
A A
Po@) 2 [ Sy, vy PrO) 2 [y, vlHa)dy.
V1 V1

» The Bayes risk of test ¢§ is fully characterised by the pair
(P, Pp) of specific test 0 (previous lecture).

» Which pairs (Pg, Pp) are feasible?

> Boundary between feasible and non-feasiible tests =
receiver operating characteristic (ROC).

» ROC properties?
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ROC definition

» Remember the two probability metrics that fully
characterise a test 6(y) (as well as any binary classifier):

» Prob. of detection Pp and prob. of false alarm Pg:
A A
Po®) 2 [ Ay, Pe®)2 [ fyn, (yio)dy.
RZ1 V1

» Define likelihood ratio and conditional pdf of likelihood
ratio frm; (I|H;):

A fym, (y[Hr)

L) =% )

(1)

H
» For likelihood ratio test L(y) > 7, Pp, Pp can be redefined:

+o00 +oo
PD(T)Q/T Frpm, (H) dl, PF(T)é/T Fro ([ Ho) dl.
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ROC Property 1

» Points (0,0) and (1,1) of (Pr, Pp) belong to ROC.
Proof:

> Always select H; (or equivalently, set 7 = 0):
Pr(r=0)=1, Pp(r=0)=1. (2)
> Always select Hy (or equivalently, set 7 = 400):

Pr(1 = 400) =0, Pp(r = 400) = 0. (3)
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ROC Property 2

P A
D
=0
1 ,,,,,,,,,,,,,,,,,,,,,,,,,,
Polt) [~ ;
A
8
+
1}
= : L,
0 Pe(t) 1 P

» Slope of ROC at (Pg(7),Pp(7)) is equal to 7, i.e.,
dPp(r) _

Pp(r) — T
Proof:

> Pp(6) = [ fom, (H) dy =1~ (17 frm, ([H) dy =
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ROC Property 2

> Po) = [T s @y a = 1— [T g (D @ =

dPp _ o 4
e (1) = = frym, (7[H1), (4)
dPp
similarly, — (1) = 7fL\H0 (7|Hop). (5)
dr
From Egs. (4), (5):
dPp ,  frm, (71H1)

T) = —————. (6)
dPp frimg (T1Ho)

» Recall that:

e Fymy (yIH1)
Pp(r) = frymy (H) dl = fyiay (yIH1)dy = ———— fyuy (y[Ho)dy
. v v fymg (yIHo)

+oo
= / L(y) fyng (y[Ho) dy = / U frymg (HHo) dl = (7
Vi={y:L(y)=7} T
dPp (4)
o (7 =7 frmy(T1Ho) = frym (7[H1) =7 fr 1, (7[Ho). (8

From Egs. (6), (8), the proof is completed.
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ROC Property 3

Po
t=0
1 [ e ——>
7 ‘
Polt)|[ -
s
70
s
“ '
8
+
1
= 1
0 Py 1P,

» The domain of feasible points (Pg, Pp) is convex.
Proof:
> We need to show that for any two feasible points
(Pr1,Pp1), (Pre, Pp2), the line connecting them is also
included in the feasible points.
» Such line is described by p € [0, 1]:

Pr(p) = pPr1 + (1 — p) Pro, (9)
Pp(p) = pPp1 + (1 — p) Ppa. (10)



ROC Property 3

» Such line is described by p € [0, 1]:

Pr(p) = pPr1 + (1 — p) Ppo, (11)
Pp(p) = pPp1 + (1 — p) Ppo. (12)

> Why? solve each of the above for p and equate: you will
find out the line equation connecting the two points.

» Define the following randomized test that selects
probabilistic between two tests:

(13)

5(y) = 01(y), with probability p,
Y= d2(y), with probability 1 — p,

where 0;(y) is the feasible test with Pg;, Pp;, 7 € {1,2}.
» The test above achieves Pr(p) and Pp(p) given in
Egs. (11), (12).
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ROC Property 3 Remarks

Py

Po(t) [

8 7
S 3

0 Pe(t) 1 P

» Define the following randomized test that selects
probabilistic between two hypothesis, independently of the

measurements y:

3(y) = {Eg

with probability p, (14)
with probability 1 — p,

» The test above achieves Pp(p) = Pr()1|H1) = Pr(Qh) =p

and Pg(p) = Pr()1|Hp) =

Pr(V1) = p.

» Thus, line Pp = Py = p belongs to the feasible points.
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ROC Property 3 Remarks

7/
Po()f -~ R,
| 49*,/
Q7
I 7/
L7
W7
e
&
1 7 1
ol il 1 [
0 Pe(t) 1 P

» The domain of feasible points (Pr, Pp) is convex.
» Line Pp = P = p belongs to the feasible points.
» ...thus, domain of feasible points are located below the ROC
curve!

» Domain of feasible points is convex and located below
ROC.

» ...thus, ROC curve is concave!
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ROC Property 4

P A
D
1 t=0
yal
Q 7
Po(T) g s
A
Qe
i /
Lo
L/
e
8 7
1 7/ '
|7 !
0 Pe(T)

» For tests on the ROC curve, Pp < Pp.

Proof:

» ROC curve is concave.

> (0,0) and (1,1) belong to the ROC curve.

» ...thus, Pr < Pp.
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Remarks

P
1 | Y
Pol) [

1/2 |-/~

0 Pe(t) 172 1 P

» What about “bad” tests? Are all points with Pp < Pg
feasible? [NO!]

» Assume a “bad” test 0 with specific (Pg(d), Pp(d)).

» Define the following test § that flips the decision:

oy) =1-0d(y). (15)

> (y) achieves (f);‘,f/)]\)) = (1 —-Pg(9),1 —Pp(J)), i.e., region
of feasible tests is symmetric around (1/2,1/2).
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Remarks

» Define the following test § that flips the decision:
6(y) =1-4(y). (16)

> §(y) achieves (Pp,Pp) = (1 — Pp(6),1 — Pp(d)), i.e., region
of feasible tests is symmetric around (1/2,1/2). Proof:

P (6) = /y Fypi (v [Ho)dy = (17)
Pp(d =1- ) = /y Sy (y/Ho)dy = 1 — Pp(s).  (18)

..and similarly for Pp(d).
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P Assume binary hypothesis testing, with y ~ N (mj, K;) under hypothesis
Hj, j € {0,1} and y € RV X1,
Preliminaries:
. IR ~1\T 7\ -1
1. For any matrix K with inverse, (K ) = (K ) .
2. Thus, for any symmetric matrix K with inverse, the inverse is also symmetric:
(K_l) T k-1

3. For any scalar z with z = aTb, z = bTa, where a, b vectors of the same dimension.

1

VeoVIK;|

fyma; (¥IH1) Hi

Ty, 1H) = oxp (—%(y—mj)TK;Hy—mj)) - a9

> T (20)
Fyng (y[Ho)
1 Toe—1 1 Tie—1 1 Kol ) 1
(y-mo) Ky (y—mo) - -(y—m1) K, "(y-—mi1)+ - In > In(m) & (21)
2 2 2 K|
...simple calculations exploiting 2. and 3. above [try them!]...
1 op(. 1 -1 T (1o—1 —1 T
ey (ko' - &) y+y" (K 'mi - Ko 'mo) > (22)
S¥)
1 7 1 7 1 | Kol
n=-m; Kimj — —-mj Kgmg — — In + In(7 23
Smi] Sm) 2 Uy (n (23
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> Assume Ko = K7 = K. In that case, the test is simplified as follows:

Hy
yTK ! (mi —mg) =y"K 'Am > n & (24)
———
Am
H
VAN _ _ 1 _ A
Ss(y):yTK 1AmmeTK ‘Am > 'r,meTK 1Am:n5<:> (25)

Hy
Ss(y) = AmTKily —amT K 'mg > n— mg K 'Am

1>

MNss (26)

where we have used the fact that K~ is symmetric; Ss(y) is the shifted sufficient statistic,
which is affine transformation of a Gaussian vector, and thus, it is also Gaussian:

Ho : Ss(y) ~ N (o, AmTK*Am) (27)

Hy :S.(y) ~ N (AmTK*Am, AmTK*Am) (28)

Notice that K~! (and K) are positive definite, and thus, Am7K~'Am > 0. We set

AN
d?> = AmTK ™' Am. We also need the following definition of the (Gauss) Q-function Q(z) and

its properties:

+oo

Q) £ Ly o
27
d
Q-2) =1 - Q(), 22&) _ _
dz

1,2
1- — et/ 24, (29)
2w
—0o0
1 2
/2, (30)
2w
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Examples

Ho : Ss(y) ~ N (o, AmTK*Am) =N (0, d2)

Hy :Ss(y) ~ N (AmTK_lAm, AmTK_lAm) =N (d2, dz)

Hy
We can now calculate the basic probabilities for the test Ss(y) > ns:

Yoo +oo L (S _ dz)z
Pp = H = —
D Ise(y)H, (s/H1) ds N i o) ds
Ns Ns

s—d? +o0

—g =t 1 2 , — d?

d_ et g (T Y g a2,
ns—d2 V2 d d

too too 5
S
Pp = H = [E— R
F / fss ()11 (s/Ho) ds / Vonaz P ( 2d2) ds
Ns Ns

+oo

s
d t

1 —12/2 MNs Ns -1
Ry dt = — — = Pg).
N t=Q ( p ) = Q" (Pp)

ns
d

(34),36) = Pp =1-Q (- Q7' (Pp)) .

(31)

(32)

(33)

(34)

(35)

(36)

(37)
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Examples

Pp=1-Q(d- Q™" (Pr)). (38)

> We need d as large as possible! Why?

-

L L L L .
0 0.2 0.4 0.6 0.8 1
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Whitening Procedure

P> In many cases, it is useful to simplify the observation model with linear transformations.
To this end, the eigendecomposition of positive-definite matrix K is exploited:

KP=PA &K P1 P2 PN = A1pP1 A2pa ANPN
I | Lo
(39)
A1 0 0
Lo 0 A ... 0
=| P1 P2 ... PN . . . & K=pPAP"
\ [ \ : : i :
0 0 ... Ay
(40)
with Kp; = \; p;, @ € {1,2,..., N}, i.e., columns of P are the eigenvectors of K and

{X;} the corresponding eigenvalues, P is orthogonal, i.e., P PT=PTP =1Iyand A
diagonal matrix, with main diagonal the positive eigenvalues of K, i.e.,
A = diag[A1 A2 ... AN].

> Set AT1/2 = diag I:\/;l\/g LA /)\N] and multiply y by A—/2pT,
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Whitening Procedure

» Multiply y by A—Y/2pT,

with

» Thus,

Sp

ATYZPT y — A7Y2PT ;A7 Y/2PT (41)
—_——
Yw My Vw
S Yw = pj+ Vu, (42)
E[ve] = A~Y2PTE[NV] =0 (43)
Efvy vi] =AY 2PTPAPTPATY/2 o ATV/2AA7Y/2 1. (44)

vw ~ N (0,Iy) and the detection problem is simplified in Eq. (42). Notice that

;_LI—MO:Ail/zPT (ml—mo):Ail/ZPTdm (45)
smTK '6m = smTPA ' PTom = smTP A2 A Y2 PTom = 5uT o

(PR (46)
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Examples

» Another example:

Y= +v, (47)

with v ~ N (0,0%Iy), j € {0,1} and mp = 7 = 1/2.
It can be easily shown that:

1. Minimum probability of error detection rule is the minimum
distance rule:

H,
Iy = mollz = Iy — pal2
2. The probability of error of the above rule is given by:

Pr(e) = Q (”’“‘2‘;‘”) |

Proof: simply write the ML rule and exploit the fact that affine
transformation of Gaussian vectors is also Gaussian.
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o M-ary Hypothesis Testing
e Error Probability Bounds
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M-ary Hypothesis Testing

» Assume M hypotheses {H;}, j € {0, 1,..., M — 1}, with

priors Pr (H;) 2 j.

1. Observe y and find out decision rule §(y) = 7, i.e., decide
H; for that specific y.
2. Equivalently, find out ); = {y : d(y) =i}, with
Y=UL5 Y and YinY; = 0Vi # j.
> We will revert to Bayesian formulation. Remember Bayes
Risk R(0) and conditional Bayes Risk R(d|H;):

M-—1
R(d) = )  R(0|H;), (1)

=0
M-1 M-1

R(0H;) = )  CijPr(6(y) =i[H;) = >  CyPr(Yi|H;)
]\24_—01 M-1 =

4 R(é) = Cij Pr (yl|HJ) Ty, (2)
i=0 j=0

where Cj; is the cost of deciding ¢ when H; holds.
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M-ary Hypothesis Testing

> Bayesian formulation:

M—-1M-1

R(S) =Y > Cy Pr(Vi[H;) (3)

=0 0
e
Z Z 'Lj/ fy\H Y|H ) j dy (4)
M_fl R M-1

= / > Gy Ty, (y[Hj) 7 dy (5)
i=0 Vi j=0
M-—1 ]\]/[—1

= Z / Z C,;j Pr (Hjb’) fy (Y) dy (6)
i=0 Vi j=0
M-1 M-1

= fy(y) > Cii Pr(Hly)dy  (7)
=0 Vi Jj=0

Ci(y)
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M-ary Hypothesis Testing

» Bayesian formulation:

M—-1 M—
R(6) = Z y Z r (H;ly) d
Ci(y)
M—-1
= ; /inz-(y)fy(.Y) d

» From Eq. (9),

oply) = g omin Ci(y)

i.e., we select Hy if Ci(y) < Ci(y), Vi€ {0,1,.... M

(10)

~ 1)
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min Pr(e) rule: MAP rule

P> Set symmetric costs:

0, i=j,

In that case, min of prob. of error is equivalent to risk
minimization (as in the binary case):

(11)

M-1
R(6|H;) = > Ci; Pr(ViH;) =) Pr(Vi|H;) (12)
i=0 i#j
= R(d| j) =1—Pr(Y;[H;) = Pr(e[H;) (13)
—1 M-1
Z R(5|Hj)m; = > Pr(e[H;)m; = Pr(e) (14)
j=0 j=0

M-—1
= > Cij Pr(Hjly) =) _ Pr(Hjly) =1—Pr(Hily)
=0 it

(15)
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min Pr(e) rule: MAP rule

> Set symmetric costs:

Chj =1 —-5m':: {

0, i=y,

> Min prob. of error rule:

M—-1

Cily) = Y Cij Pr(Hjly) =) Pr(Hjly) = 1 — Pr(Hy)

j=0

dmap(y) = arg

= arg

= arg

= arg

i€

max

1€{0,1,...,M—1}

X
i€{0,1,....M—

max
i€{0,1,....M—

i
i 1 — Pr(H;
{0711?“1.34_1}{ r (Hily)}

) Pr (H;ly), (MAP rule)

fym (y|Hi)
1} Iy(y)
1 Ty, (y|H;)

(17)
(18)
(19)

(20)
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min Pr(e) rule and equiprobable hypotheses: ML rule

> Set symmetric costs and equiprobable hypotheses

(mj =1/M):
0. i—i
Cij=1-08;;=1 e (21)
1, i#j.
> Min prob. of error rule:
M—-1
Ci(y) = Y Cyj Pr(H;ly) =) Pr(Hjly) = 1 — Pr(Hily)
=0 J#i

5 = (yHi) - (mi = 1/M 22
mL(y) arg o max  fym, (yHi) - (mi = 1/M)  (22)

N (y[H;) (ML rule). 23
argz’e{o,{?éﬁ\/l_l} fyim, (y[H:) ( rule) (23)
» ...generalisation of the binary hypothesis testing case!
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Example

» Under hypohesis H;, with i € {0,1,...,M — 1}, 7; = 1/M and y = [y1 y2 ... yN]T:

y~N(m; K). (24)

What is the minimum probability of error detection rule?

» Minimum probability of error detection rule for equiprobable hypotheses is the ML rule:

Spr(y) = arg Fym,; (y1Hy) (25)
e{o,l,.. ,M 1}
—arg  ma i [fypu, (v1H:)] (26)
zE{O,l,...,M—l}
1 o1 N In(|K[)
—arg  ma (r-m)"K 'y -mp) - —mem - ——| @0
i€{0,1,. M—l} 2 2
= arg 1n[((y—m> K (v —m)))] (28)
16{01 M—1}
. T ogo—1
—argmin (v -m)TK (v —m)y)) (29)
ie{0,1,...,.M—1}
» Note that through whitening z = A~Y/2pT Yy, i.e., using K=PA PT, under
hypothesis H;:
z~N(A*1/2 pT mi,IN). (30)

...analytical proof in the previous lectures.
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Error Probability Bounds

> Set symmetric costs:

0, i=j,
Cu'zl—éu':{l = (31)

As we have already seen:

R(5|H;) = ZPr (yi\Hj) —1-Pr (yj\Hj) =Pr (e|Hj) Spr (yj‘?\Hj) (32)

M,I# M-1
R(6) = Z R(S|H,)m; = Z Pr (e\Hj) 7 = Pr(e) (33)
=0 =0

> So, y; is the region where hypothesis H; is NOT selected. Define formally the following:

ve = U Ers (34)

k#j

Ekj = {y : Pr(Hgly) > Pr (Hjly) } e

f, H .
)y, Ty (yIHk) s (36)

fyin; (Y\Hj) Tk

i.e., €, is the region of {y}’s where hypothesis Hy, is preferred over Hj.
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Error Probability Bounds

» The areas {&;} for given j usually overlap.

> It is often possible to find a subset of such areas, such that:

Yi= |J &j, with N(j) {0, 1, ..., M —1}/j (37)
kEN(5)

i.e., N(j) does not include element j.

» Thus,
A c
Pr(e[H,) = Pr(VfH;) < > Pr(&ylH,) (38)
kEN(5)
Improved union bound
max Pr (€;[H;) < Pr (V5H;) (39)

» The above bounds are usually simple to calculate!
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Example

ElO
» Find error probability for optimal detection for the following:
Hj: y=mj; +v, (40)

with v ~ N (0, 0212), j€{0,1,2,3} and m; = 1/4.
» MAP is simplified to ML, simplified to minimum distance. In addition:

V§ = €10 U E30 (41)

1>

d = |lmy —moll2 = |lm2 — mil2 = ||m3 — m2]l2 = [m3 —moll2  (42)

Pr (e[Ho) = Pr (¥§|Ho) = Pr (€10 U £30/Ho) < Pr(€10/Ho) +Pr (€30/Ho)  (43)

o() (%)

d
< Pr(e|Ho) <2Q (;) , (44)

where the latter is due to minimum distance binary error detection in white Gaussian
noise (reminder in next slide).
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Reminder

» Reminder:
iy =ptv, (45)

with v ~ N (0,0%Iy), j € {0,1} and mp = 71 = 1/2.
1. Minimum probability of error detection rule is the minimum
distance rule:

Hy
Iy — moll2 = [y — pl2
2. The probability of error of the above rule is given by:

Pr(e) = Q (W) |
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Example

Yo
m; my my mg my my
m;, m; mz m; m m.
Elﬂ ESO
»  Error analysis:
Y5 = €10 U E30
N
d = |lm1 —mgl2 = [[m2 — m1|2 = [[mg — m2|l2 = [[m3 — mo]|2
d
Pr (e[Ho) = Pr (¥§|Ho) = Pr (€10 U £30/Ho) < Pr (£10/Ho) + Pr (€30|Ho) = 2Q ( )
—_———— ——
d d
o(#) o
d

°(

20

)

Pr (e[Ho)

d
:>Q(

20

)

IN

Pr (€10|Ho) = Pr (E30|Ho) < Pr(e|Ho)

Pr(e), due to symmetry

d
Pr(e) < 2Q (;) >

(46)

(47)

20

(48)
(49)

(50)
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m; my m, m, m; mo

m; m; mz m; m m:

Exo Es
» Error analysis with improved union bound:

A
d = [|m1 — mgll2 = [[m2 — m1l2 = [[m3 — m2]l2 = [[m3 — mg]|2

d <P 2 d
Q;,Y(e) Q;

> Exact error analysis:
d 2
Pre)=1—(1-Q | —
20

—e (i) [+ (z)]

Thus, upper error probability bound is tight!

IA

(51)

(52)

(83)

(54)
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e Optimum Bayesian Estimator
o Bayesian MSE Estimator

MSE Performance Evaluation
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Parameter Estimation Theory: Bayesian Formulation

» Formulation for Bayesian estimation is similar to Bayesian
detection!
1. Observe y € R"™ for estimation of parameter vector x € R™.
2. Detection: find out decision rule §(y) = j, where j is
discrete.
3. Estimation: find out estimate X(y) € R™.
» Formulation for Bayesian estimation requires the following:

1. Observation model: fyx (y]x), i.e., conditional p.d.f. from
measurements!

2. Prior density: fx (x), i.e., prior p.d.f. density of the
unknown parameter. Notice that in the Bayesian
formulation the unknown parameter is assumed random!

3. Cost function: C(x(y),x) = C(%,x), i.e., the cost of
estimating x as X(y).

» Derivations in Bayesian estimation proceed alongside
similar lines to Bayesian detection!

...some details on the problem formulation follow...
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Details on problem formulation

> Observation model fyx (y]x) is defined explicitly or
indirectly through a measurement model.

» One example: y = h(x) + v, with fy(v) known and h(x) is
a deterministic vector function of x; assume n = m.

= fy|x (y’X) = fv (y - h(X))

Proof:
9y 9y 9y
da da e da
ovs  ous o5 o
dxq dxg o Oxm, v2
Joxm ey = | e A I U &)
oun  Oun Oun Vyn
oz, Omg ' Omm
] 9 2]
where Vf:[if —f f 1, (2)
Oz, Oxa OxTm
y=h(x)+v=>
n=m fv(v) fv(y — h(x))
x) = A = = — h(x 3
Fy 910 " | T e = Rt ®

5/22



Details on problem formulation

» Prior density fx(x) is known.

> ...unfortunately, prior density biases the estimator towards
more probable values of x, i.e., values of x, where fx(x) is
larger.

» ..remember that we don’t know anything about fx(x) (i.e.,
it is random), apart from possible values.
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Details on problem formulation

» Cost function: C'(x(y),x) = C(%,x), i.e., the cost of
estimating x as X(y).

Cx,x)=C(x—x)=L(e) (4)

» Loss function L(e) is a not decreasing function of error
A
e=x(y) —x.
> 3 different versions of loss function are typically used:

L. Lysg(e) = |le[3
2. Luag(e) = |leflx
3. Lc(e) : notch function.
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Details on problem formulation

> 3 different versions of loss function are typically used:
1. Euclidean norm or 2-norm squared:

Lys(e) = e[l =e"e=) . (5)
i=1

Due to the square, it penalises more larger errors;
improbable instances of x matter a lot; sensitive to
modelling errors.

2. Sum norm or l-norm:
m

Luas(e) = [le[i =D _leil- (6)
i=1
It weights equally the magnitude of all errors.
3. using the infinity norm:

[0, if|lelle <€
Le(e) = { 1,  otherwise, (7)

where infinity norm is given by ||e||cc = max;|e;|; notch

function cares about small errors and not about errors

above e.
8/22



Details on problem formulation: error (cost) functions

Lvse(e) Lua(e) L(e)

» The first two are convex, while the last one is non-convex (for
scalar error).
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Optimum Bayesian Estimator

» Cost is a function of random vectors, since both %X(y),x are
random.

» Bayesian objective: find x(y) = [z1(y) z2(y) ... 2m(y)]T by
minimising the expected cost:

E[C(x(y), x)] = / C&(Y), %) fug(x,y) dx dy (®)
— [ [0t fayxiy) ax| ) av. )

» Notice that posterior p.d.f. fy,(x|y) and measurements p.d.f.
fy(y) can be (at least in principle) known:

fy\x(Y|X) fx(x)

fy(y)  fy() :/xfwx(yIX) fu(x) dx

(10)

fx|y(x|y) =

10/22



Optimum Bayesian Estimator

min E [C(X(y),x)], where

B(C(y).)] = | [ / CR()%) fuy(xly) dx| fyly) dy. (1)

> Notice that since measurements p.d.f. f,(y) is non-negative for
each given y, the term between brackets above is minimised for
each given y according to the following:

X(y) = argmm/ C(x fx|y(x|y) (12)

= argmmfy— / C%(3), %) fuy(x,y) dx (13)

= argmln/ C(x(y),x) fxy(x,y) dx (14)

—argmin [ Cx(¥).%) Syl fulx) dx. (15)
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Optimum Bayesian Estimator: MSE case

» For minimum square error (MSE) loss function:

C(x(y),x) = (X = %)" (X — x) = Lusg(e) = [[e[3 (16)

=xT%x —xTx —xTx +xTx (17)

> Since a”h = bTa, 2% — b and 2 Ax — (A + AT)x,
780(){(?')’)() =2(I+IM%x—x—x=2%—x) (18)
ox
T
» Denoting Vi = [621 822 %] = 8%7 and the following

from Eq. (12)),

(scalar) function of % (
T&ly) = [ CG(3).%) fgy(xly) dx (19)
= Vid(&ly) = [ VaClk(y).x) fuy(xly) dx=0 ()
= [ 2= fuyxly) dx =0 (21)
o



Optimum Bayesian Estimator: MSE case

» _..continued from previous page...

[ 25=%) fuy (xly) dx =0 (22)
& [ % fylxly) dx = [ x gy xly) dx (23)
o [ Faylaly) dx = [ x fuyxiy) ix SERly] (20)
x¥se = | x fuy(xly) dx 2 Elxly). (25)

> Bayesian MSE estimator is the conditional (on y) mean!
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MSE Performance Evaluation

» First, conditional mean square error is calculated:

J(k(y)ly) <02=* / (% —3)T (& — %) frpy (xly) dx (26)

X

£ Buy—y [(% - %) T (% - %)Y =] (27)
S Eyjy—y [Trace {()2 —-x)T(x - X)} Y = Y] (28)
" Trace {Exy—y [(& - x)(& - x)T[Y =y]}  (20)
= Trace {Kx|y:y} , (30)

where Trace(A B) = Trace(B A) property was used in (*) and
E [Trace{-}] = Trace{E[-]} property in (), and

Kx\Y:y = Kx|Y:y(Y) é IEx\Y:y [()A( - X)(}A( - X)T|Y = Y:I (31)

— [E Ry - 0E Xy -0yl ax (@2

X

— [ Byl - Efxly) ey ax. (33)
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MSE Performance Evaluation

» Then, (unconditional) minimum mean square error (MMSE) is
calculated:

MMSE £ Ey [(%(y) — x)"(%(y) — )] (34)
= Eyy [Trace {(x(y) — x)" (%(y) — x) }] (35)
= Trace {Exy [(X(y) — x)(%(y) —x)]} (36)
= Trace {Kg} = Trace {Kx vy}, (37)

where Trace(A B) = Trace(B A) and E [Trace{-}] = Trace{E[]}
properties were again used and Kg follows:

Ke2 [ [ By Elxly) ey (xy) dxdy  (39)
- / / (x — E [xly]) (x — E ey fgy (xly) fy () dx dy
-/ [ [ = By B el ) x| y(3) dy

Ba_(33) / Kooy fy(y) dy. (39)



Optimum Bayesian Estimator: MAE case

» For minimum absolute error (MAE) loss function:
C(x(y),x) =[x =x[[y =21 = 21 [+[22 — 22|+ ... +|Zm — T
I(&iy) = [ 1% =l gy xly) dx (40)

> Denoting sign(z) = +1 if z > 0 and sign(z) = —1, otherwise, the
following are calculated:

9J(Xly)
oz,

/sxgn(fcifxi)x
[ [[-] / |t st

/ sign(2; — @) fa,;)y(zily) da;. (42)

= /Sign(ii — i) fx|y(xly) dx (41)
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Optimum Bayesian Estimator: MAE case
» Continuing from previous slide,

9J(X|y)

25— 0® / sign(i — @i) fo,|y(zily) dzi =0 < (43)
K
x

z;
&4 “+ oo
/ sign(2i — @4) fo,|y(zily) dz; +/ sign(®; — @) fa,;)y(zily) dz; =0 <<
— oo &

i

(44)

@5 +oo
/ faly(®ily) dzg — / fa;y(@ily) dzg =0 < (45)

i

z; +oo
N N
I = / fay )y (®ily) da; :/ fayly (®ily) deg = T2 (46)
oo 5

i

» Since I1 + I = 1 and from above Iy = I, the Bayesian MAE
estimate is the median of the posterior density:

~MAE

z; —+o00
/ fi?1|y(‘r1‘Y) d‘xl = /MAE f:r1|y(xl|y) dxl = 1/2 (47)

— 00
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Optimum Bayesian Estimator: MAE case

» Thus, the i—th entry of Xmag(y) is the median of the posterior
density fwi‘y(xi|y):

+MAE

T; +oo
| tewtlyyde= [ foylely) de=12 @)

— 00
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Optimum Bayesian Estimator: Notch Cost Function

0, if|le]le <€
1, otherwise,
where ||e||oc = max; |e;|, assuming e = [e; e3...e,]T. Thus,

)

» For notch cost function L.(e =% —x) = {

JEy) = [ L0 Gy = [ ey

|i_x||002€

i [ el (19)

» For ¢ — 0T, minimization of J(-) above is equivalent to
maximizing the following:

AA— 1 <o Tty (Kl dx (267 gy (K1) (50)

» In other words, for small ¢,
X(y) = Xmap(y) = argmax fyy (x|y). (51)
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Optimum Bayesian Estimator: Notch Cost Function

» For notch cost function L.(e = X — x) and small e,
%(y) = Xmap(y) = argmax fyy (x|y) (52)

> ...the Bayesian estimate becomes the mode (i.e., maximum) of
the posterior density (MAP estimate).

» It makes sense if the posterior density fx|y(x|y) has a single
dominant peak, or multiple peaks of the same size.

» Example: for jointly Gaussian x,y, conditional mean, median
and mode coincide, i.e.,

xmse(Y) = Xvae(y) = Xuar(y) = E[x|y].
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e Examples of Bayesian Estimation
@ Properties of Bayesian MSE Estimator

o MMSE Estimation in Linear Gaussian Systems
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Bayesian Estimation Example 1

» The following (exponential) p.d.f.s are given:
fyle(ylz) = xe™Yu(y), f(z) = ae™*"u(x)

» Need to compute f,(y) to compute f,(z|y):

fla,y) = f(yla)f(2) = ave™ T u()uly) =

+o0 a
fo) = [ e = ()
= flaly) = Lt 00 “;Ez) Y _ (y + a)Pae 00y ()
> MSE estimator:
+oo
dsnl) = [ afalyde == ——

4/21



Bayesian Estimation Example 1

» MAE estimator:

1 2 &
5= flzly)de = (y+a)? | ze W92y =... =
2
o 0
=[1+ (a+y)z] e~ (aty)2 e=(atu)® (I+c)e =
e“=2(1+c)=c=mI2(1+c)]=c~168=
c 1.68

iMAE(y):G*’y:yﬁLa

» MAP estimator:

)
DL T0) _ ) 1 a2y (y 4 ame 05—y 4a)) =0 =
(y+a)’e” W7 (1 — (y+a)z) =0 =
a1
MAP — y Ta
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Bayesian Estimation Example 2

> x € R™ y € R" jointly Gaussian < [ﬂ ~ N (m,K)

w2 [ =[] 2[5 [ (-]
Kyx Ky ] Kxy =Kix

> x € R™ y € R” jointly Gaussian =

Fay(X[y) = N (mx )y, Kxy)

myy = m, + KxyKy'(y — m,)
Kxy =Ky - KxyKy'Kyx
xuse(y) = E[x|y] = mx;y = m, + KxyKy' (y — my)
MMSE 2 E [||x — %usg|[3] = Trace (Kxy)
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Bayesian Estimation Example 2

> The three estimates coincide (conditional mean, median,
maximum):

Xmse(Y) = Xmar(y) = *map(y) = m, + Kxy Ky (y — my).
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Properties of MSE Estimator

Orthogonality Property:

El(x-E[xly]) g(y)| =0 (1)

The above states that the expected value of the inner product of
the error vector with any function of the measurements is always
Zero.

This property is just an expression of the fact that the
conditional mean E [x|y] extracts all the information in y that
can be used to reduce the MSE.

Notice that g(y) can be scalar or (row) vector.
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Properties of MSE Estimator
Proof.

Ist method: E[(x — E[x|y]) g9(y)] = E[x g(y)] — E[E[x|y]g(y)]

:Ehgwn—@u%BAWWﬂ

()
= Exg(y)] -Exg(y)=0
where at step (%) the law of iterated expectation was used:

EM@WH=§£@M@WMA®

[ [ 1t iz ay - /y | ) fGaly) do 7(0) dy

nd mettod: B bx o] = E{ B xa)ly1} = | & xy] ov)]
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Properties of MSE Estimator

Uniqueness Property:

E[x|y] is the unique vector function € R™ that adheres to the
orthogonality property.

Proof.
Suppose that h(y) is another function with E [(x — h(y)) g(y)] = 0 for
all functions g(-). Then, it follows:

E [|[E[x|y] - h(y)||3] = E|(E(x|y) — h(y))" (Elxly] —x +x — h(y))
9(y)
=E[¢"(y) (Exly] —x) + ¢ (y) (x — h(y))]

= 0 + 0 (due to orthogonality principle) =
E[x|y] = h(y),

since at the last step, the expected value of a non-negative random
variable is zero only when the variable is always zero. ]
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Properties of MSE Estimator

Variance reduction:
if Ky = E[(x — m,)(x — m;)7]
and .
Kp =K [(x — E[xly]) (x — E(xly)"] = Kxy
then

* Kg <Kx ie., Kx — Kg is positive semi-definite,
* Krp =K, if and only if (iff) m, = E[x|y] i.e., knowledge of
the observation y does not improve the estimate of x.
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Properties of MSE Estimator

Proof.
x —m, = x — E[x|y] + E[x|y] — m, , therefore
Ky =Kp+E [ E[x|y]) (E[x|y] - mm)T]
E [(Ex]y] ~ m.) (x — Ex|y]")]
+E“E["'Z{y) m, ) (Elxly —m,])"] &

Kx = Kp +E[(x ~ Exly]) A)"] + E[Ay) (x ~ Elxly]) ']
+E [A(y)A(y)T] =Kg+Ka &
Ka
Ky — Kg =Ka =E[A(y)A(y)"] > 0 since
z'E [A(y)A(y)T] z = E[ZTAy AyTz| =E [||zo]]3] =0 O

T
Zg
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Properties of MSE Estimator

...proof continued.

® KA =0 (all elements zero) = Trace(Ka) = 0 and the following
holds:

Trace(Ka) = Trace [E[A AT]] = E[Trace(A AT)]]
=E[ATA]=E[||Al3] =0=
A=A(y)=0=E[x|ly]=m

® For the other direction, i.e., A(y) =0 = Ka = 0 the proof is
trivial.
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MMSE Estimation in Linear Gaussian Systems

» Let x € RP= to be estimated and y € RPv with

p(x) ~ N(pe, 2),p(yx) ~ N(Ax + b, 2,)
where A (deterministic) D, x D, real matrix, b € R and
py = Ely] = Ape +b.

Then, p(X|Y) ~ N(,u'w|y7 z]a:Iy) with

Haly = Zafy [ATZ, (¥ = b) + 37 o]

and

Yoy = (2;1 + ATEJIA)f
» Thus,

1

xumse(Y) = Ex|y] = papy = Sy [ATE, Ny — b) + 3, s
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MMSE Estimation in Linear Gaussian Systems

Proof (1/4):
p(x,y) = p(y|x)p(x) =
log p(x,y) = log p(y[x) + log p(x) =
1 _ 1 _
= 5 (x = pa) "I (x — pe) — Sy — Ax = D)TE Ny — Ax — b)+
-+ constant terms

1 _ 1 _ 1 _ _
= —§XT21 Ix — fyTEy ly — i(Ax)TEy Ax) + yTEy LAx)+

2
+ linear terms -+ constant terms
1 1 1
= —§XT2;1X - §XTAT2;1AX - §yTE;1y + —l—yTE;l(Ax)—l—

+ linear terms + constant terms
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MMSE Estimation in Linear Gaussian Systems

Continue proof (2/4):

1 -1 Ty—1 ATy -1

— -5 [XT yT] [Ex +2‘121§y A Azyzl:y ] [;] + constant terms
s

= —=|x 3 =

x" ¥yET S
S ATE A —ATS ! A A
-1 __ x Y Y 4 — Tz Ty
= { 3 1A s | TAT A Ay, 2)
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Useful (for the proof) Theorem

Continue proof (3/4): The following theorem will be utilized; its
proof will be given in the problem sets and can be found in various
textbooks, e.g., Chapter 4 in "Machine Learning, a Probabilistic
Perspective" by Kevin Murphy):

X1

< } Gaussian vector, i.e. x1,xo jointly Gaussians,
2

i by ¥
winp= 1] 5 2B [ o) =[50 5] oA

A A
-1 _ 11 12 skk
= |:A21 A22] (A

® Assume x = [

Then:

p(x1]x2) = N(p1)2, E1p2), p(x1) = N(p1, E1), p(xa) = N(pe, Ba2),
B2 = p1 + B12X5) (@2 — po)
=M1 — A1_11A12(332 — o) = Al_ll [A11p1 — Ara(xa — p2)]
=Xy o[A11p — Ara(z2 — p2)] (3)
S =11 — 1285 8oy = A (4)



MMSE Estimation in Linear Gaussian Systems

Continue proof (4/4).
Thus, from (A**) and Eq. (4),

Soy =An = (B +ATE A

From from (A**), Eq. (3), and py, = Ap, + b,

Boly = Sgpy [2 w|yl~tm — Auy(y — 11y)]
=y (B +ATS A, + AT (Y — Ap, — b)]
= Ew|y (2 e + ATS Ap, + AT S y—b)—ATS A,
Sy [Z5 e + ATE (y — b))
O

¢ Important Remark: for the above p(x) and p(y), the following
can be also shown:

p(y) = N(Ap, +b,%, + AZ, AT)
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MMSE in Linear Gaussian Systems: Example
f(y2|a:) = N(m’ 2!/)7 f(m) = N(”’Oa 20)

® We observe y1,vys, - ,Yyn, which are i.i.d.

® We would like to estimate x based on yg, where
1

yozN

Ez‘zlﬂﬁ (5)

» Notice that yo ~ N (z, %21/). This can be easily shown by
the fact that affine transformation of a Gaussian vector is
again a Gaussian vector! and the fact that:

Y1
_ 1 11 1} Y2
Yo = N .
B YN
N——
y

Yf x ~ M(m, %) then y = Ax +b ~ N(Am + b, AXAT)
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MMSE in Linear Gaussian Systems: Example

® ThUS, f(y0|m) = N(mv %zy)a i'e')
Az +b=x2=A=Lb=0and f(x) =N (o, X0).
e With direct application of the above theorem,
f(®|yo) = N(p, %) where

1

—1
p=3% [IT (NEy) (0 —0) + 25" o

and

1 -1\ -1
_ [yt (-1 —1
¥ = (20 + <Nzy) > = (Zgt+ N3t
Therefore,
-1
&(y)msE = p = (251 + NE;l) (Nzy—lyo + zgluo) .
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Thank you!
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Bayesian Linear Estimators: Problem Formulation

> Assume m, = E [x], m, = E[y] and the joint covariance matrix
B X —m, T 1] | Kx Kxvy
K—IEHy_my] [(xfmx) (y —my) H_[KYX Ky]
are known
> K >0 (K~ ! exists); otherwise a non-trivial linear combination
in vector y — m,, exists, so we could replace observation y by a
vector of smaller dimension!

> f(y|x) and f (x) are UNKNOWN!

> y e R", x € R™

> we are looking for %, (y) = Ay + b that minimizes E || e||3]
(MSE) with the following:

A a m x n matrix

b cR™
e=x—%.,(y)=x—Ay—b
Ele)=m,=m; — Am, — b

Ll
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Bayesian Linear Estimators

» Notice that

x(y) =E[x|y] = E[(x - E[x|y]) - g (y)] = 0 (orthogonality property)
= E[(x-E[x|y])] =0 (9(y) =1)
=Ele]=0

» For %7 (y)=Ay+b=E[e]=m, — Am, —b #0

» Thus,
Kz 2E [(e—me) (e_me)T] (1)
e—m,=(x—Ay—b)—- (m; — Am, — b) (2)
— I, —A] B - Eﬂ (3)
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Bayesian Linear Estimators

» MMSE:
E[lle|3] =E [e"e] = [le]l? — [lme]l3 + [me|/3 (4)
=E[(e - me)" (e — mc)] + [|melf3 (5)
= Trace (Kg) + |[|m.||3 (6)

» Kpg depends on A, m. depends on A and b
> Set m¢ =0=m; —Am, —b=0=

b=m, - Am, (7)
» Now we need to find A. We work as follows:

]

L.
= [Kx - AKyx Kxy — AKy]| [_ AT}
=Kx - AKyx — nyAT + AKyAT
=KxyK;'Kyx —KxyA" — AKyx + AKyA™T +S
= (Kxy — AKy) ((nyKle)T — AT) +S

= (KXyK;,l — A) Ky (nyK;l - A)T + S 6/15



Bayesian Linear Estimators

» Schur complement S 2 Ky — nyK;/lKYX
» Schur complement of Ky in K plays a role in evaluating
the determinant and the inverse of block matrices.
» Schur complement is constant and known and does not
depend on A

Thus, Trace (Kg) =
Trace ((KXyK{/1 — A) Ky (KXyK;,1 — A)T> + Trace (S),
since Trace (A + B) = Trace (A) + Trace (B).
> Trace ((KxyKy' - A) Ky (KxyKy' = A)") =0, since
(KxyKy' — A) Ky (KxyK;y' — A)" is positive semi-definite.
Thus, Trace ((KxyKy' - A) Ky (KxyK;' - A)") =0
KxyKy!' = A.
» Thus, Tr (Kg) is minimized iff
KyvKyl=A (8)
» From Eq. (7) and Eq. (8), %1 (y) = m, + KxyK; ' (y — m,).
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Remarks

1. Ele]=m.,=0

2. %, (y) = m, + KxyKy' (y — my) = %use (y)
for x,y jointly Gaussians

x| oy (| ™ Kx Kxy
Yy m, ’ KYX Ky
Linear estimate and MSE estimate coincide for the Gaussian

case, i.e., all MSE estimates will necessarily be linear.

3. As promised, linear-least-square estimate Xy, (y) requires
knowledge of first and second moments and not knowledge of

fy|x (Y|x) vfx (X)
4. Orthogonality property holds only for linear functions of y:
El(x-%x.(y) g(y)]=0

for all linear functions g (y) = go + y' g1 where gy a real scalar
and gy a vector in R”.
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Proof.

» Estimation error: x — Xy (y) = [Im —KXyK;l} [); B mz}

> g(y) =go+mlg +(y—m,)" g where go+ m]g; is a
constant term.

» Therefore,
El(x—%.(y)g®)] =E[(x—%c(y)(y —my)" g]

Yy —my
_11 |K
= [Im —nyKyl] KXY:| g1
mx (m+n) Y | nx1

= (Kxy —Kxv)gi

mxmn nx1

=0
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Remarks (Cont’d)

Proof.

5. %Xz, (y) is the unique linear estimator that adheres to the
orthogonality property.

> Suppose that h (y) is another linear estimator with the

property E[(x —h(y))-g(y)] = 0.
» Thus

E[lI%c (v) ~h)I3] =E[g" (y) %z (y) = x +x—h(y))]
=E[g" (vy) (e (y) - x)] +E[g" (y) (x —h(y)] =0+0
=0,

since g (y) = %Xz, (y) — h (y) is linear (because Xz, (y),h (y)
are linear in y).

O

10/15



» Assumey =Hx+v

. xeR™" yeR”
2. v uncorrelated with x

3. E[v]=0and E [vv'] =R > 0, i.e., R is positive-definite
4. H (known) constant matrix

> We need to find the Xz, (y):
> m, = Hm,

> Kyx —E[(y -m,) (x ~m,)"]

=E [(H (x —mg)+v)(x— mx)T}
— HKy
since E [v] = 0 and v,x are uncorrelated
> Ky =E [(y —my)(y - my)T}
_E [(H (x —my) +v) (H (x — my) + v)T}
=HKxH" +R
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» Therefore,
> %, (y) =m, + KxHT (HKxH” +R) " (y — Hm,)
» K, =Ky —KxHT (HKxHT +R) HKy =Kz

» We can show that

K;'=K{'+H'R'H (A)
ie. K = (Ky' +HTR'H) ™
("Sherman-Morrison-Woodbury" identity)
Proof:

» (A+BCD) '=A'—A'B(C!+DA"'B) ' DA"!
> (K;) ' =Kx - KxHT (R+HKxHT) ' HKy,
where A=K', B=H', C=R!,D=H
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> Denote G 2 KxHT (HKxHT + R)_l (a)
> It is true that G = K, HTR ™! (B)
» Proof:
1. K;'-G- (HKxH" +R) 2 H'R ' (HKxH" +R)  (6)

2. K;'- G- (HKxH" +R) ¢ (K + H'R'H) KxH" (7)
which is true
3. (6) = (7) after simple manipulations...

» Also
K;'%, (y) = (Ky' +H'"R™'H) (m, + G - (y — Hm,))
=Ky'm, + H'R'Hm, + H'R™' (y — Hm,)
=Ky'm, +H'R 'y (B)

> (A), (B) are used in the derivation of Kalman Filter.
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» Since
l. G=K H'R"!
2. %, (y) =m, + KxH” (HKxH" + R) ™' (y — Hm,)

G
3. K. = (Ky' + HTR'H)

> Then %1 (y) = m, + (Kx' + H'R'H)  H'R"! (y — Hm,)

» Notice that the above expression is regularly used in various
textbooks.

14/15



Thank you!
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Estimation of Non-random Parameters

> Alternative view: fx(x) not available, x € R™ is viewed as
unknown and non-random!
1. Likelihood function fyx(y|x) of measurements vector y
when the parameter vector is x.
2. One simple solution: maximum likelihood (ML) estimate!

xuL(y) = arg max fy«(y[x) (1)
= arg max In fy (y[x) (2)

...the latter (logarithmic) is convenient for p.d.f. in the
exponential family (Poisson, Exponential, Gaussian):

fyx(y|x) = exp (x's(y) — t(x))

> Bias: b2 E[x — %(y)] = x — E[&(y)]
» Bias of ML estimate may not be zero.
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Estimation of Non-random Parameters: Bias

> Bias: b2 E[x — %(y)] = x — E[&(y)]
> ...is the expected value of the error.

> ..is a weak metric, since it does not ensure that for a single
measurement vector y the estimate will offer the true
parameter vector x.
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Estimation of Non-random Parameters: Examples

» Assume y ~ N (As,0%Iy), where y € RY and s, 0? known.

> AML(Y)?
1
| fya(ylA)| = —5lly = As[lf +In | ——=| (3)
vl 202 2 (2m02)N
= argmaxln fy, (yx) = argminly — As|[3 (4)
= arg mjn (y — As)T(y — AS) (5)
= argmin (||s|[34° - 25"y A + |ly[}3) (6)
STy
= (7)
1s[13
A STy
= Al = e )
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Estimation of Non-random Parameters: Examples

> Assumey = [y1 y2...yn]" of N independent and
identically distributed (i.i.d.) r.v’s {yz}, with
yr ~ N(m,v).

> Estimation problems:

1. Estimate m with v known.
2. Estimate v with m known.
3. Estimate m,v.

» Check bias of estimate(s).
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Estimation of Non-random Parameters: Examples

» Assume y = [y1 %2...yn]" of N independent and
identically distributed (i.i.d.) r.v/s {yx}, with
yr ~ N(m,v).
P> Estimation problem:
1 Estimate m with v known. Check bias of estimate.

Solution: ...this is the previous example, with A = m,
s=[1 1...1]T and 02 = v, Thus,

T N

. 'Y D k—1Vk

mmL(y) = N = kNl 9)
Nm

E [ (y)] = w =m (unbiased estimate) (10)
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Estimation of Non-random Parameters: Examples

» Estimation problem:
2 Estimate v with m known. Check bias of estimate.

Solution: In [fy,(y|v)] = =& In(2mv) — 5= Zszl(yk —m)?

d 1 1 2
d In [fy|v(y|v)] = % -N+ Z Z(yk - m) =0 (11)
k=1
L
=>@ML=*Z Yr —m (12)

N
k

» Need to make sure that % In [fyo(ylv)] <0 at v =oy:

d? 1 (N 1 )
gl In [fyu(ylv)] = ... = " (2 -3 ;(yk —m) > (13)
v=0ML 1 N
= 5 <0 (14)
Oy 2
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Estimation of Non-random Parameters: Examples

> Assumey = [y; v2...yn|T of N independent and identically
distributed (i.i.d.) r.v.s {yx}, with yx ~ N (m,v).

» Estimation problem:

2 Estimate v with m known. Check bias of estimate.

N
R 1 2
UML = N kzjl(yk - m) (15)

N
1 N
E [ome] = N ZE [y —m)?] = WU = v (unbiased estimate).

(16)
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Estimation of Non-random Parameters: Examples

» Estimation problem:

3 Estimate m,v. Check bias of estimates.

9y [fylma(ylm,v)] = =2 S (y —m) =0 (17)
om v =
1 N
= WML = 57 kgyk (18)
1 N
5 [fyimo(ylm,v)] =0 = o0 |7Vt ;(yk —m)*| =0
(19)
1 N
= ML = kz:: Yr — )’ (20)

» How do we know that the above maximise the log-likelihood?
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Estimation of Non-random Parameters: Examples

» Estimation problem:

3 Estimate m,v. Check bias of estimates.

1 N
mML = N Z Yk (21)
k=1
1 N
oML = ~ ;(yk — th)? (22)
A
g(m7 U) =1In [fylm,v (Y|m7 U)] (23)
8%g(mw)  8%g(m,w)
om?2 Om Ov
H!] (m7 ’U) = (24)
Bzg(m,v) 82g(m,v)
Ov Om ov?

» Need to check that the Hessian matrix H, on g(m,v) for
m = iy, and v = Gy, is non-negative definite (left as an
exercise for the reader).

12/30



Estimation of Non-random Parameters: Examples

» Estimation problem:

3 Estimate m,v. Check bias of estimates.

N
1
E[om] = E lN Z(yk - mML)Q] (25)
k=1
1 & 1 & e
= lNZy,% +E NZA lszMLyk] 26)
k=1 k=1 k=1
=..= N]\_f 111 # v (biased estimate) (27)

» That is why numerical packages utilise the following, non-ML,
unbiased variance estimate:

N
Z (yx — i)
N L=
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Performance of Non-random Parameter Estimation

> Apart from bias, we need the mean square error (MSE) and the
corresponding error matrix:

Ce =E[(x - %x(y)) (x - x(y))"] (28)
MSE = Trace (Cg) = E [||x — x(y)|[3] (29)
» Denote the gradient (vector) V, = [8%1 8%2 . %]T and the

Hessian (matrix) V,VI.
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Non-random Parameter Estimation:Cramer-Rao Bound

» m x m Fisher Information matrix J(x) characterises the
information in y € R™ about the parameter vector x € R™:

360) 2 By (VoI fy ()] [Voln fy(yix)] "] (30)

» It turns out that

J(X) = _Ey V:L’Vg‘ 1nfy|x(y|x) (31)

Hessian of the log-likelihood

Theorem

For any unbiased estimator X(y), the MSE is bounded from the
Cramer-Rao bound, which stems from the diagonal elements of the
inverse Fisher Information matrix:

E [} —x(y)ill3] = [I7' ()], (32)

where a;, A;; denotes the i—th element and i—th diagonal element of

vector a and matriz A, respectively. 15 /80



Cramer-Rao Bound Example

> Assumey = [y; yo...yn]|T, with {yx} i.i.d. and yp ~ N (m,v).

N
1 [fypon oy, )] = 5 In(2r0) — 5> (s~ m)?

d 1 & -
% In [fy|m,v(Y|m7 U)] = +; ’;(yk - m) (33)
82
I [fyjm (vl )] = = (34)

N
O ol )] =~ + - S g —m)? (35)
k=

ov 20 202 f
02 N 1
w In [fy|m,v(Y|m7v)] = +271}2 - ﬁ ;(yk - m)2 (36)
92 1
Imov In [fy|m,'u(y|mav)] = ) kZﬂ(Z/k - m) (37)
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Cramer-Rao Bound Example

» ...will use the Hessian version of J. Thus,

-5y [ ol ]| = -y [T = 2 (39)

—Ey [8822 I [ fy(m,o (¥ |m,»u)]} = -E, 22132]\]:% ]
=ty (39)

By [0 [fmalstm )] = B [1 é@k - m)] ~0
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Cramer-Rao Bound Example

» Now, Fisher Information matrix and its inverse can be calculated:

N
I(mv) = |
0

» Therefore, for any unbiased estimate of m, v,

0

= I (m,v) =

N
202

m(y)?)] >

=|=

9 202
6] >

zls

o

N

(41)

(42)

(43)
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Schur Complement Properties

» Before offering the derivation, we first list some basic properties.
For any symmetric matrix M of the following form:!

A B
M= (44)
BT C
» If C is invertible then:
1. M>0if C>0and A—BC'BT >0
2. For C>0: M>0< A-BC'BT >0
3. Schur complement
M|C 2 A — BC'BT = det (M) = det (M|C) det (C)
> If A is invertible then:
1. M>0iff A>0and C-BTA"'B>0
2. For A>0: M>0< C—-BTA'B>0
3. Schur complement
M|A 2 C —BTA'B = det (M) = det (M|A) det (A)
!matrix inequality in the positive semi-definite sense:
A>0<2zTAz>0,Vz
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Cramer-Rao Bound Derivation

» Proof: First, we show the two equivalent forms of the Fisher
m X m matrix J(x):

/ Fype(yx)dy =1 (45)

Va In [fy\x(y|x)] = mvxfy|x(Y|X) = (46)

VTfy|x(3’|x) VT In [fy\x(y|x)] fylx(Y|X) (47)
45) /VTfy|x Y|X dy = /VT ln fylx(y|x)] fy\x(Y‘X)dy 0

% [ V.V [fye (o] fylyixldy +
4 [ 9an [fya310] 93 I [fye(y o] fynylx)dy = O (49
= J;(x) =E, [68 In [fy|x(y|x)] g ln [fy|x(y|x)]

__E, [ax?;xj In| fyx(y|x)]] (49)



Cramer-Rao Bound Derivation

» Next, we define the 2m x 1 vector z, corresponding positive
semi-definite matrix C, and bias b(x):

X = )/\((y) —b(X) Cll 012
7 — e ,C, = :E[zzT]ZO
vw In fy\x(y|x) 021 022
(50)

» The following hold:

1. C;1 =E [(e —x)(e —x)T] = Cg — b(x)b"(x).

2. C22 = J(X)

3. Cp=Cl =E [(X — X — b(x))Vg In fy|x(y|x)] =
~I,, + VIb(x).

» The proof for 3. above follows.
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Cramer-Rao Bound Derivation

» Next, we show Cjp = CI, = —1,, + VIb(x).

Cio = CL =E [(x — % — b(x)) VT In fy 1 (y|x)]

- / (x — % — b(x)) VT In [fy e (¥10)] o (y1) dy

Vi fyix(ylx)
—b(x)] =0
/ ) fype(y[x)dy = 0
/ v fy|x(y|x)dy+
Ci2

+ / (L, — VTb(x)) y (y[x)dy = O

= Cip = -1, + VIb(x)

(55)

(56)
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Cramer-Rao Bound Derivation

» In summary:

1. C;1 =E [(e —x)(e —x)T] = Cg — b(x)bT (x).
2. C22 = J(X)
3. Cio=-1,, + V;Fb(x)

ic;);c(_yl—b(x) Ci1 Cypp
zZ = e ,C, = :E[zzT]zo

Cao1 Ca
VzIn fy\x(y|x)
(57)
> We assume that positive semi-definite J(x) is invertible, i.e., it is
positive definite. We also known that C, is positive semi-definite.

» Thus, the Schur complement is also positive semi-definite:

Ci1 — C12C5,'Cy, >0 (58)
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Cramer-Rao Bound Derivation

» In summary:
1. Ci1 =E [(e —x)(e — x)T} = Cg — b(x)bT(x).
2. CQQ = J(X)
3. Cio=-1,, + V;Fb(x)

Ci; — C12C5, Cy, > 0 = (59)
Cp — b(x)b"(x) — (I, — VIb(x)) 7' (x) (I, - VIb(x))" >0
(60)

» For unbiased estimator, i.e., b(x) = 0, the above is simplified to:
CE — J_l(X) Z 0

which completes the proof, if we consider that the diagonal elements
of a positive semi-definite matrix are non-negative. W
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Existence of Efficient Estimator - Some Properties

» From Cramer-Rao proof, the following positive semi-definite

matrix was utilized:

[ C11 = CE Cl2
C. = ] =E[zz"] >0= (61
L 021 022 = J X)
[ St B x—%(y)—b
cl= , 7= : (62)
C D Ve In fyx(y]%)

» The following properties hold:

1. S=Cy; — C15C5' Coy.
2. C,>0=8S>0.

3.C,>0=S>0.
4

. S =0 = 2m x 2m matrix C, is of rank m.?

2A > 0 in the positive-semi definite sense, i.e., A > 0< zTAz > 0
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Efficient Estimator

» From property 3 in the previous slide, it follows for any biased
estimator, with bias b(x):

S = Cx — b(b(x)" — (T = VIb(x)) 37! (T, - VFb(x)) " > 0
(63)

» For an unbiased estimator (i.e., b(x) = 0), the above leads to the
Cramer-Rao bound:

S>0&Cg>J L (64)

» Efficient estimator is the unbiased estimator for which Cg = J L.

» Thus, for an efficient estimator it holds that S = 0; from
property 4 in the previous slide, matrix C, is of rank m for an
efficient estimator.
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Efficient Estimator

» For an efficient estimator it holds that S = 0; from property 4 in
the previous slide, matrix C, is of rank m for an efficient
estimator.

» ...the above means that m rows can be written as a linear
combination of the other m rows; having in mind the definition
of C, and the definition of z, the above can be stated as follows:

x—X(y) = MV, In fyx(ylx) = (65)
(x — X(y))Vy In fyx(y]x) = MV, In fy1x(y[%)Vy In fy(y]x) =
Ey [(x = %(y))Vy In fy(y[x)] =

MEy [V In fyx(y[x)Vy In fy)x(y]x)]

= Cip=MJ

=M=CpJ '=(-L,+V,bx))J '=-J"! (66)
= X(y) =x - MV, In fy.(y[x) (67)
= X(y) =x+J7 Vo In fyx(ylx) (68)
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Efficient Estimator Existence

» Thus, an efficient estimator has the following form:
= %(y) =x+JI7 Vo ln fyx(ylx) (69)

» The left-hand side (LHS) is independent of x; thus, an efficient
estimator exists iff the right-hand side (RHS) of the above
equation is independent of x.

» Notice that V. In fyx(y[x) = 0 = X(y) = x.
» Remarks follow:

1. If an efficient exists, it must be a stationary point of the
likelihood function; if there is only one such point, it must
be the ML estimator.

2. If the likelihood function has a single maximum and the
estimator is efficient, it must be the ML estimator.

3. ...the above does not mean that all ML estimators are
efficient... they may not be!

> ...will see an example at next lecture.
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ML Estimates and 1-1 Functions

® Suppose fuL(y) and z = g(x) with x = g71(z), i.e., g(x) =z is
a “1-1” mapping.

e Thus, fy(Y|Z> = fy(Y| g_l(z))

X

» Then if yp, = g1 (2) = 2L = g(RuL).

» However, the transformation does not preserve unbiasedness or
efficiency.
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Phase estimation example

Now let’s examine a phase estimation example:

y= 1| =a ] e vov s N

sin 6

where o and A are known and 6 is unknown.
n

0

cos 5
Thus, y N(A [sin 0],0 Ig).
So,

1 1
= In fy (y]0) = ) In (27T)204 - 7[( e — ACOS@)2 + (ys — Asin9)2]

= —In27m0° — i(yc +92 4+ A%) + o (AyC cos @ + Ay, sin6)
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Phase estimation example (cont.)

oL A
= ;(fyc sin @ + ys cos0) = @

0
= y.sinf =y, cosf = tanf = ?
= éML = tan~! Ys
Ye
L A .
502 = ﬁ(fyc cos 0 — y, sin )
__4 0 ind
= ——5 (Y cos0 + y, sin )
%L A y
d(f) = -E 202 | = EE[yC cos 0 + y, sin 0]
A A?
= SE[Acos? 0 + Asin® 0] = —
o o
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Phase estimation example (cont.)

) 2 —1 0'2 1
E[(0 - 0(y)*] > J (‘%‘E:ﬁ
* Elfw(y)] =?
* Is Oy (y) efficient?
Set Ye = TC.Osd)} éML — tan~! Ys _ ¢
Ys = rsmd) Ye
r >0, yf+y§:r2 , y
ALl
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Phase estimation example (cont.)

vT Or Or h‘éc 2 ¢y25 2
Jacobian = A I CT ¢V&k+ys Gk
- VI T |29 Be | T —Ysoz R
Ye — r y 9y 9ys 1+(yﬁ )2 1+(yis)2
Ys ) ve
So,
o2
det(Jacobian)| = L v = L
[det(Jacobian)| |\/yz+y§-(1+(g;:_>2) Ty V| Ve
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Phase estimation example (cont.)

fy(y)
Hence7 fr7¢(r7¢‘0) - |Ja(?’0bian| Yo = T COS P
Ys = rsin¢g
1 o~ oz ly—nl?

V(2m)%(0?)?

1

Vyity2

2 2
VYe T Vs 6_20% [y2+y2+A%—2Ay, cos —2 Ay, sin 6]

2mo?
__r - stz [r*+A%—2Ar cos (¢9—0)]
2mo2

even function of ¢—0

Thus, Effy] = E[¢] = 0 + Elé—oT 6

Therefore éML is unbiased.
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Phase estimation example (cont.)

Remember that

X(y) =x+J7 (x)Vx In (fy (yx))

unbiased efficient estimator exists if and only if the RHS does not
depend on x.

0.2

. A . T
X(y) =0+ ﬁ?(—ycsmﬁ—i—yscosﬁ) =6+ Zsm(qb—@)

As long as A ~ r — ¢ ~ 6 and since éML(y) = ¢ ~ 0 then,
0+ 5(¢p—0)=0¢=>0u(y)
Thus,

o2 1

E[((b - 0>2] = E[(éML — 9)2] ~J = Vel = m
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Geometric interpretation

(0]
OP| =4, 0G =y
V ~ N(0,0%15)
V =V +V (orthogonal vector subspace)
[V.]is N(0,0?)

2
sin(gb@):qSQ’ZWﬂNN(O»ZQ)
2
= Elp—0)=f and E[(¢—0)%) =

Thus, efficient estimator for high SNR. 11/36



Sufficient Statistic

® y is a sufficient statistic of x if fys is independent of x i.e.,
all information about x has been “squeezed” in fs(s|x) and
there is no leftover information about x that could be
extracted from fy|s, which means that the latter is
independent of x.

¢ In practice, sufficient statistic s(y) can be directly found if
fy(¥|x) belongs to the exponential class of densities:

fy(¥%) = u(y) - exp[xTs(y) — t(t)],

which includes discrete Poisson, Exponential and Gaussian
distributions as special cases.
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Example 1

.. , T
o iid {ys}s, e ~ N(mow), y = (31 92 - ]

k=1 k=1
= e

(27ru)%

1Y m &

—_—— 2 —_—
1 e’ 20 z_:y’“L uz_:yk

= N [ 2u € k=1 k=1

(2mu)2
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Example 1 (cont.)

N N

1 9 M
o 2 Ykt — 2 Uk

2mu . 1
k=1
————

i.e. s(y) is a sufficient statistic for estimating parameter x.
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Example 1 (cont.)

Sufficient statistic requires the definition of the unknown
parameter

¢ if u = unknown — sufficient statistic is s1(y)

¢ if m = unknown — sufficient statistic is sa(y)

Notice that we have shown that:

2 N
. . 2mmr
Uy, = N = E by — N > Uk
S i
= 7Nk — 1y, = s2(y) — s1(y)
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Example 2

® iid {yx}’s, yx ~ exponential with known parameter 1/6,
T
y=[n » . w

fyio = (é)N cem o 2 T ulyw) =

L(yl9) =In [f(y]6)] = ~NInb - =2,y >

o N s(y) A s(y)
O Liylo) =
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Example 2 (cont.)

E [éML (y)} = % S Elyx] = %;, 6, (unbiased estimate)
2
J@—lquuﬂ o Bl ()] =~ gy + N0 = o

Thus E[(0 — Ovr)?]) > T7H(9) = 91\?
B [(6— 0wn)?| = 0%+ E 1] - 208 [
= [Bu] - 0 = GE[Cu?) - ¢

;2 [N E [y?] + 2% [y;] - @)] —
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Example 2 (cont.)

Since E[y;] =0 = 1/A
and E[y?] — E?[y;] = 1/)\? = 0% = E[y?] = 20*

A 1 N(N -1
E[(e—eML)Q]—l\IQ[N-zoJrze. (2 }—92

_1 2 2 2_92_—1
_N(QH +(N=1)62) -0 =5 =70

Thus, in this case, the ML unbiased estimate is efficient and
s(y) for the parameter 6 is s(y) = Y yx.
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Discussion on unbiased estimates

Set J(%,%) = E [[[x — %(y)[3] = MSE

“Uniform minimum variance unbiased estimate Xumvugr(y)”
J(Xumvug, x) < J(%,x) for all other unbiased % estimate.

® How do we find it?
® secarch for ML estimate, see if it is unbiased and see if it is
efficient.
e if that approach fails, look for complete, sufficient statistic,
as well as an unbiased estimator X(y).

e Apply RBLS theorem: if s(y) is complete sufficient
statistic, then the estimate X(s) (stemming from RBLS) is
a UMVUE of x.
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Complete Sufficient Statistic

® What is a complete sufficient statistic?

» Let s(y) is a sufficient statistic for parameter x.
» s is complete if E[h(s)] =0 < h(s) =0 &
there is at most one unbiased

estimator of x depending on s only.

Note: if h(s) = 0 = E[h(s)] = 0 is trivial.
Obviously, E [h(s)] = 0 = h(s) = 0 is non-trivial
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Complete Sufficient Statistic

® How do we find sufficient statistics which are complete?
In general it is hard.

® However, for fy(y|x) = u(y) - exp [xTs(y) — t(x)], s(y) is

complete sufficient statistic!

e __.the above includes Poisson, Exponential and Gaussian.
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Rao-Blackwell-Lehmann-Sheffe (RBLS) Theorem

The Rao-Blackwell-Lehmann-Sheffe Theorem states that for an
unbiased estimate X(y) of x and a sufficient statistic s(y), the
estimate can be improved:

If E[x(y)] = x, (1)
then X(s) = E[x(y)|s] is unbiased
with K(x) < K(x) i.e., their differ. is positive semi-definite
(2)
and K(x) = E[(x — %)
K(x) = E[(x — %)

e If s is complete then X(s) is a uniformly minimum-variance
unbiased estimator (UMVUE).
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Proof of RBLS Theorem

Proof of RBLS Theorem:
Let’s start from the last one and assume that (1), (2) are true:

e If § is complete, then there is at most one unbiased estimate of x
that depends on s : X(s).

® Suppose that there is a second X2(y) that achieves smaller
Ky (x) < K(x).

* If we condition on s, then we must get %(s) with K(x) < Ky(x)
which is a contradiction.

® Thus, there is no other estimator that minimizes the mean
squared error, meaning that %(s) is UMVUE.
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Proof of RBLS Theorem (cont.)

Now lets prove that E[X(s)] = x
S

Bix(s)] = B | Ex(v)ls]| 2B = x

K s |yls

law of iterated /repeated expectation

Finally we need to prove that Kx < Kx:

g(y) g(y)

T E[(x —x)(x - %)] (3)

*% = E[x(y)|s] is the MSE estimate of x(y) given s thus x — X(y) is

orthogonal to any function of s (or y).
24 /36



Proof of RBLS Theorem (cont.)

Proof.
Thus from (3) we are left with:

Ky = Ky + E[(] — %) (% — %)]
= K K covariance matrix
Ky — Ky >

ie., Ky — Ky is positive semi-definite.
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° iid sy, = [yl Yo ... yNﬂ yk~$-6*y7k
1 s(v)\ T $
£518) = g e (= 290) T ulon. s(v) = Y m
k=1 k=1
A S
e (y) = g)

0(y) = y1 since E[y;] =0 (unbiased estimate)
sy) = Z yr = complete sufficient statistic

Thus, according to RBLS,
0(s) = I}@ [x(y)]s} = ;ljl [yils] is an UMVUE
1

= /yl < Jyns(y1ls) dy
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Example (cont.)
® Thus, I need to find the fy |, s = 2115:1 Yk

<
=
—
o
]
o

Y1
Y2

<
)
o
—_
o
o

<
“ 7
—_
= O
i)
— =
= O
<
Z
L

YN

iy 1
Vyy2 .10
Jacobian = : =|: Nl =A
VyUN-1 00 ..10
vls 11 .01 1

= O
(aw]
)

*A — upper diagonal = det(A) = product of diagonal elements, and
det(A) =1
27/36



Example (cont.)

0
851
Oya -\ A -
Ty = | thus S5 = S (F)
Aéf _ fy(y)
Oyn | det(Jacobian)||,_s-1.
N-1 N—1
= Zyk+yn:>yn:5_zyk
k=1 k=1
1 s Nt N-1
= fyryono1,s(Y) = N exp <_9) <H U(?Jk)) U <s — Z yk)
k=1 k=1
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Example (cont.)

fyhs :/fyl,yg ..... yN_l,s(S')dyzdy3---dyN_1
= QLN exp(—%) le,j;f u(yk) [f u(yN—l)u(S—ZI:;ll yk) dyN—1:| dyadys...dyn—_o
= 9% exp(—%) fHI,j:_f u(yk)~u<s—2§;f w)(s—Zf;f yk) dyadys...dyn—_o2

1 s\ (s —y )N 2
e oN exp <—0) ((Ny_l)Q)‘U(S —y1)u(y1)

s(y) : 2521 yr = sum of N identically distributed exponentials

with parameters % eachs = s : Gamma distribution with

f(s) =T(N,0) = SN1ERESD Bls] = N - 6, Var(s) = N - 62

yno1 20,8 =30 gk 2 0= s = 30y > yna 2 0
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Example (cont.)

® Alternatively, we could integrate fy, s

Lo spp 1 3 N-24
/fy;[,s(ylas) dyr = giNe / (N—Q)'/o (s —y1) dyr =

Lo 1 (S—yl)Nlr

N° (N—2)! N_1

— ie—s/O 1 SN—l

N IN— )
1 —s/0 1 N-1

N TN
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Example (cont.)

S— yl N 2
* Thus, f fuys _ %M —y)ulyr)
vluls T TR T % le*
(N1

(le—_ll)(S_yl)

N-2

u(s —y1)u(yr)
e and E[y|s] /yl fy1|s yl| ) dya

Thus, the RBLS procedure provides 0(s) = x= = O,
which can be shown to be both unbiased and efﬁment'

S

s complete = at most one unbiased estimate which is a
function of s only.
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Example (cont.)

® Trick : find one unbiased estimate which is a function of s
only, provided that s is also a complete sufficient statistic.
That will be the UMVUE!

Below, we offer an example where transformation offers ML
estimate, without preserving unbiased property.

if X(y) = %u(y), z=g(x) 11 [x=g '(2)]
then zZy(y) = g(x(gf)) “ML estimate is

parameterization independent”
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Example (cont.)

o — s(y) _ Xk
ML N N

1 1 “ 1 N
02f2>)\=f:>>\ML(y)—A = —

N1 [N _ N T N2 s
]E|:5:| —/st(s)dS—Wle € ds
_ N1 d 1 N-2_—s/0
“No1a) N ¢ ®

N 1 N

= N_18 - N_ 1/\, thus the estimator is biased

33/36



Example (cont.)

* Set \g = %XML = N1 E[Xo] = A (unbiased)
* X\o(s) = in a function of s (which is a complete sufficient
statistic) only, thus A\o(s) = Aumvur

® [t can be easily shown that:

CRLB: \*/N
E[(A — Aumvue)’] = A% /(N - 2) E[(A — Auw)?] > E[(A — Aumvur)?] >
E[(z — S\ML)Q} _ (N_l\i)%>g > CRLB

Important Remark: the conditional mean given the complete
sufficient statistic should always give the same estimator.
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BLUE: Problem Definition

> Suppose that we want to estimate parameter vector 8,1y based
on measurements y(ny1) with linear estimator:

A

0=Apxn) -y (1)

» We require unbiased estimator:

E{é}:A-E[y]:e 2)
that can be achieved if and only if E [y] = H(nxp) - Opx1) =
Apxn) - Hvxp) =Ip (3)
» rank(I,) = p = min (rank(A), rank(H)) = min(N, p), thus
NZ=>p
aj
ag
> Set A= (4)and H = [hl hy --- hp]
: 5
ar )
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BLUE Derivation
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BLUE Derivation

» Minimize var(éi) =ajKy a;, for i = 1,2, , p subject to
the constraints aiThj =05, 1,] € {1,2,--- ,p}

» We have p constraints for each a;. Since each a; is free to
assume any value, independently of the others, we actually
have p separate minimization problems linked only by the
constraints:

p y . .
Ji = a;FKy aH-Z (/\5'2) (a;l“hj . 6ij>) Py {/\gz) >\§Z) . )\(i)}T
j=1

0J;
8ai

P

p )
= 2Kya; + > Ah; = 2Kya, + HA; = 0

N 0J;
aal-

Jj=1

:0:>az~:

-1
—5 Ky HA; (8)
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BLUE Derivation

> To find A;, we need to exploit the constraints:

a/ -hj=hja; =6;, j=1,2--,p

(3

where 6;; = 1 for ¢ = j and d;; = 0 for 7 # j.
» from (5) and the above = H" - a; = e;, which is a vector
with all zeros apart from position ¢, where it is one:

1
H'. a;, =e;, = H'. (—2K;1H>\i) = €;

1 -1
_ Tyr—1
= —3Ai = (H"K;'H) (9)
| —
assuming invertibility of HTK;IH

» from (8) and (9) =
-1
a;,,, = Ky 'H (HTK;'H) e
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BLUE Derivation

af ef
A a © B
o a.yo 2 y = 2 .(HTK;1H) H'K,' y
ay ey
N——
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Example 1

» y = H6O + w, w has zero mean E[w] = 0 and
EwwT] = Ky, so Ely] = HO
> 6-E[6) - (H'K;'H)  H'K;'y - E 9]
0
= (H K K;lHe—W
+ (H'K,'H) H'K,'w

— ('K, 'H)  H'K,'w
» Thus,

=[(o-2[o]) (0-=16))] -
— ('K, 'H)  H'K,'K,K,'H (H"K,'H) "'
—
= (H'K,'H) ' =G,
= var(f;) = [(HTK;H)”} (10)

it
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Example 1

» This could be also seen from

and

T
Top
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Remarks

» Remark 1: MVUE for linear Gaussian Case = BLUE, if
y =HO +w,w ~ N(0,C), then
. -1
o = (HTc—lH) HTC !y = BLUE is also UMVUE

» Remark 2 (Gauss-Markov Theorem): if the data are of the
general linear model form y = HO + w, where H is a
known N X p matrix, @ is a p X 1 vector of parameters to
be estimated, and w is a IN x 1 noise vector with zero
mean and covariance C', then BLUE of 0 is

9:(HTC’1H)_1HTC’1y and (}:(HT(le)_1

N should be greater or equal than p (N > p)
11/18



Example 2

» y[n]=A+wn|, n=0,1,--- , N — 1 : win] white noise
with variance o2 (not necessarily Gaussian)

E[wn]]=0 and Ewnjwln+m]] = c%6[m)]
y[0] 1 wl0]
- y[}] _ 1 e w'[l]
JN—-1| |1 w[N — 1]

y Hy o v

1
Ely] = 1 A, E[w]=0 and E[ww!]=0c%Iy
!
—

H
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Example 2

» Thus,
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Example 3

» We had seen that for yy i.i.d. ~ N(Mg) = N(0,u)
k

N 2u?
uML = N zz: and CRLB = W

» IS iy, efficient?
» What is the BLUE estimate of u?

14/18



Example 3

» E[tn] = %Nu=u unbiased

= (NE[yé] - (Z ) 2u2) —

2 1 N!
2 (Nog2e 2 2) a2
N ( u +2F(N—2)!Zu u
2 T2 2= — CRLB
N + N v N CR
> Thus, tu(y) = & Sohey ¥ is efficient.

2yNN(O7u)70u :\/E:>

ny_ J(ow)"-1-3---(n—1), neven,
Bl = {0, n odd,

15/18



Example 3 - BLUE estimate
» Search for BLUE of u:

lsLus(y) = aly = Z kYK

0
UBLUE Z akM— 0 #u Biased

» However, we can use 2 = y; (data transformation) and
test BLUE on the transformed data:?

N
UpLue(z) = Zakzk = Z aryi = (11)
k=1
EltpLue] = Z agu =1u (12)
H,_/
ij:l ar=1

3zk iid, Zak =l=ar==
16 /18
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e Introduction to Composite Hypothesis Testing and
UMP/GLRT

o GLRT: Examples and Properties

e Asymptotic Optimality of the GLRT

3/24



Composite Hypothesis Testing

» Composite Hypothesis Testing: Problem of both Detection and
Estimation!

» Problem definition:
1. Ho:y ~ fy (¥]x, Ho), x € Xo
Hl Yy~ fy (Y|X7H1)a X € Xl
2. x defines H;; if Xy = A there would be no way to
distinguish between Hy, H1 = no way to estimate x
» Example: y[k] = As[k] +v[k], k€ {1,...,N}
1. A unknown, v WGN with v ~ A (0,0?), ¢ unknown
y(1] s[1] v[1]
yl2] s(2] v[2]
20y=1| . | =A| . |+ .
y[N] s[N] v[N]
3. Ho: A=0, 0% unknown = X, = {(4,07%) : A=0}
Hi: A#0, 0% unknown = X = {(4,0?) : A # 0}
4. 02 is common to both hypothesis, thus o2 does not play a
role in determining which hypothesis holds (i.e., it is a
"nuisance parameter").
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Composite Hypothesis Testing

» Remark: In the above example Xy N X; = 0, even though o2 is
common - remember X = (A, 02). If under Xy, A} the
observation distribution is the same, then the detection problem
cannot be solved, unless Xy U X} = 0.

» Special Case: H; is composite but Hg is "simple". This means
that the domain X, reduces to a single point xq — easier
analysis than the case where both hypotheses are composite.

» Example: The previous example with o2 known instead

1. Ho: Xp: (A,0%): A=0and ¢? fixed and known)

set Y=Y U1 QU1 =10)

. Yi=y:6(y)=14,7€0,1,6(-) decision rule

. Probability of detection:!

PD (6,){) =Pr (5 = 1|X,H1) = [y f(y|x,’H1)dy

INIUIINY

5. Probability of false alarm:!

Pr (6,x) =Pr (6 =1|x,Ho) = f(ylx, Ho) dy
V1

Ifunction of x 5/ 24




Composite Hypothesis Testing

» When Pp (§,x) is viewed as a function of x, it is called the
"power of the test"

» Neyman—Pearson approach is followed (even though Bayesian
approach is also possible):

1.

set upper bound for probability of false alarm

2. maxgzex,Pr(S,x) > a (1)
3.
4. Then, among all tests § obeying Eq. (1), we say that dump

a is called the size of the test

is a uniformly most powerful (UMP) test if it satisfies:

Pp (6, X) <Pp (6UMPa X)

for all x € Xj.
1. very strong property - rarely we find UMP
II. UMP test dump cannot depend on x
II1. if x is viewed as being fixed, dump must be the optimum
test in the sense of Neyman-Pearson tests (max Pp for
bounded Pr), so it must take the form of a LRT, possibly
involving randomization.
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Composite Hypothesis Testing - UMP

» Thus, from II) and III) we need to find LRT and then try to
transform it in such a way that the parameter vector x
disappears from the test statistic. Then the threshold of the test
is computed in such a way that the Pr upper bound is satisfied.
If that is possible, then a UMP test exists!

» Example: The previous example rewritten:

>

4
>
>

Hi: ylk] = As[k] + w[k], A > 0 unknown, w[k] ~ N (0,0?)
(WGN)
Ho : ylk] = wlk], A#£0

kel 2,....,N

Thus,
> Hity=As+w, A>0,w~N(0,0°Iy)
> Ho:y=w

case I: 0 known
X1 ={A >0} (or A < 0)(one-sided test), Xy = {A =0}

"simple"

7/ 24



Composite Hypothesis Testing - UMP

. _ f(y|A>0,H1) _ f(y|A>0) Hi
» LRT: L(y|A) = f(g\AzO,Ho) = f(zlA:O) > 7l
__1_ _ Asl|?
> f(y|A > 0) = me 262”)’ s||

> lly = Asll® = (v - 4s)" (v - 4s)
= (y" —4s") (y — As)
— [Iyl[* = Ay"s — AsTy + A%
= |lyl]* — 24sTy + A°||s||?

> set [ls||* =sTs = X 52K = B

> L(y|A) = ¢ mr (2A8Ty A7)

A
_ T
L (i) = AsTy - 2 p o
A 1 A%’E Ha
52 y_ﬁ > InT

Lyet to be specified
8/24



- UMP

Composite Hypothesis Testing

» Remember that we need a test, which does not depend on the
unknown parameter(s). Thus, we need to get rid of A.

>A>O=>1 AEHll
s'y 202_A

InT =

£ ¥ is Gaussian

> s (Y) =VE
E[s (y)] = 0 under Hg and
Efs (y)] = £4s = A8l = 4B _ 4/F under H,

Ve = VB = VE=
> Var(s (y)) = E[£+sTyyTs] = L[sTo?Iys] = £62 = o2
» Thus s (y) ~ N (0,02) under H, and s (y) ~ N (A\/E, 02)

under H;

9/24



Composite Hypothesis Testing - UMP

» s(y) independent of A, need to calculate 7.

» Pr (6 =1|Ho,A=0)=Pr(s(y) >n/Ho, A=0)
e 12
= e 22% ds

y  V2mo?

“+o0
= / 1 e_%tzdt
n

o

(2

where t = 2 = dt = %ds

3

» Be careful: we don’t need maxxex, Pr since x = x¢ (simple)
> Q@) =a=2=Q (@)= n=0-Q ()

Hi
» Thus the test s(y) > n is UMP!
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Composite Hypothesis Testing - UMP

» The power of the test can be calculated as follows:
+oo
1

Po () =Pr(s) 24> 0H) = | e 3 (- AVE) g
> set s=AVE ¢
>PD(A)=Q<y_f‘/E>
1A
=1-Q @—Q*(a)

which is monotone increasing with A.

> Remark: We managed to find UMP since we managed to get rid
of the dependence of s (y) from A. The same would be possible
for A < 0. But it could be impossible for A # 0, since the order
of the inequality would be unknown. Thus, UMP test exists only
for the one-sided test A > 0 (or A < 0).

11/24



Composite Hypothesis Testing - UMP

» case II: 02 unknown

In that case hypothesis Hq is also composite since
(A,0?) = (0,0?) (0 unknown)
» The LRT derivation still stands. How do we select n?
> one approach: set n =400 = Pp = 0 (not very good)
» second approach: a% <g?< 02U given that Pp = Q (g) =aq

Pr=Q(2) <Q (%) = a, since Q (z) is increasing with
decreasing .

» Thus n = oy - Q! (a) satisfies Pr < a and thus UMP still exists!
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Composite Hypothesis Testing - GLRT

> UMP is rarely found. We revert to generalised likelihood ratio
test (GLRT).

» GLRT: Suboptimal technique in general, even though it can
provide UMP tests in special cases.

> H0: y~ f (y|X7H0)7
> HI: ny(y|X7H1)7 XEXI
> Lo (y) _ maxxex; f(¥|x,H1) f(yl*x1,Ha)

x € Xy

T maxxex, f(¥|x,Ho) f(ylxo0,Ho)”’
X; = argmaxy,ex; [ (¥]x, Hi)

» GLR is obtained by replacing the unknown parameter vector x
by its estimate!

H
> La(y) > 7 and then we select 7 by the size of the test:

max Pr(Lg (y) > 7[Ho,x) < a,
xE

where a is the size of the test.
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Composite Hypothesis Testing

Summary - Composite Hypothesis Testing with 3 approaches:
» UMP(7) (to be explained later)
» GLRT

» "Frequentist approach': treat x as a random vector rather than a
constant (i.e. non-random) parameter:

L f(y[Hi) = [ f (ylx, Ha) £ (x|H) dx

2. Notice that f (y|Hi) = Exu, [f (¥]x,Hs)] and

By, [ (yI%,H1)]

Ex 20 Lf (¥]%,Ho)]

3. In other words, set f (x|H;), calculate the above and then
use detection theory.
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~|ye| 4 |cosB N 9
>y[yJA[Sin9]+v,v N (0,0%1,)

» Incoherent Detection

> o2 known, A4, 6 unknown

> Ho! A=0
Hli A 7& 0
» Polar Coordinates:
1. y. =7rcos¢
2. ys =rsing
3.1 =\/y2 +y?
4. ¢ =tan ' L

Ye

> (T‘ ¢‘A 0) se” 26 (A2+’I"272A’I" cos(¢p— 9))
(we have Showed thls in a previous lecture).
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cos
> gy =
Hiiy=A Lin@} iy
cos 6 9
> p—
4,6 =N <A [Sine] T 12>
= ée_if[(yc—A cos 0)2+(ys—Asin 9)2}
(27‘(‘)2 0'4
= ! eiw%(yz+y§+A272Ayc cos §—2Ay; sin 9)
2mo?
> In[f (y|A,0,H1)] = —% + % (yecos O + yssin @) + ¢ (y)

not dependent on A, 6

9 A ycosdty.sing
> 7ln[f(Y|A,9,’H1)] :_;+y S Ys S _

0A 5 0=

0—2
A =y, cos0 +y,sind
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0 A ,
> %hl[f (y|A4,0,H1)] = e (—Yesin® + ys cos ) =0 =

Yesin® = ys cosf =

tan@:% =

Ye
Opr =tan~' 22 = ¢
Ye
~ ~ 2 2 2
> Seto—aMLiAML:%—}y?—f:%:T
> Onp =0, Ayp=r
f(y|Avé7H1)
» Thus, Lg (y) = ———— &
£ (14.6.%0)
r24r2 g2
T, e ooz cos(¢—9)
5 € 202 @o
_ 2mo —
27rTU26 202
= e% = eza%(yf"’_y?)
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> La(y)
1 2
202"

T =

\VASEIVAS

InT =

20%InT =

ov2Int =79

\VRSEIVAS

r
» Thus,

“+oo
Pr(TZUWo,A:O):/ frlA=0H)dr (2

Y

» From previous results, f (r,¢|A = 0,Ho) = 575 e 22
» Thus,

2 2

f(r|[A=0,Ho) = f(r,qS\A:O,HO)dquGLe*m 3)

2
0
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Example

» From (2) and (3):
+oo r 2
Pr(/,’Z/]ﬂHO’A:O):/ 7267de
g
n

> Pr(r>nHo) =a=e 22 =
ne=—-—— =
—20%lna =n" =

1
—o’ln=-=7n*=
a

/ 1
n=o4/2ln—
a

———
fully defined
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» Power PD = f ( |A 0 7‘[1)

>
2m
f(T‘AveaHl) = f(T,¢|A,9,H1)d¢
0
27
_ / r 267 Tz;t’;z 6% cos(qﬁfe)dgb
o 2mo
r2 2 1 2m »
= %6_% Py o5t cos(=0) g, (4)
g Y 0
> Set Iy(z) = 5= OQW e# os(¥) da)

» Modified Bessel function of zero-th order Iy(-) (monotone
increasing function of z > 0)

>
27 2m—0
1 o 5% cos( 9)d¢ — 1 / o 5% cos w)dd,
27T 0 27T
L[ ()
_ = 02 cos(¥) g 5
L [Tetroway )
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>

>

_ r2+A2

From Egs. (4) and (5): f(r|4,0,H1) = Se™ 22 Iy (4F)
independent of 6.

This was expected since y. = rcos @, ys = rsing, r = 1/y2 + y2.
Sufficient statistic r is rotation-invariant - the whole detection

problem is rotation-invariant.
Pp = PI‘(’I“ > 77|7‘L1,A)
=Pr(r > n|A, H1)

+o0 2., 42
T _r?+a rA
= —26 202 I() — dT
n (o) o)

A Foo 22442
Marcum’s Q Function: Qps(a, ) = / ze~ = Iy(az)dz
B

a? is called the non-centrality parameter.

set z =1L
[ea

Pr(r > n|A) = /

n
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Asymptotic Optimality of the GLRT I

» For continuous p.d.f. of the form f (y|x) = u(y) - e[ s)—t(x)]
(exponential family)

» For discrete p.m.f. of the form Pr(y, =) =p;, i € {1,2,...,k}
(multinomial distribution)

T
y=1[y ... yn|
GLRT:

1. Pg (probability of false alarm) has a guaranteed asymptotic
exponential decay rate of n:

. 1
_NLHJ?OONIHPF (0g, N, x0) >

22 /24



Asymptotic Optimality of the GLRT II

2. Among all tests that guarantee that the size of the test decays
asymptotically at a rate greater or equal to 1, the GLRT
maximizes the asymptotic rate of decay of the probability of miss

. 1 . 1
— lim NlnPM((Sg, N, x1) > — lim NlnPM(é, N, x1)

N—+o0 N—+o00
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Kalman Filtering

Gauss-Markov Process

Useful Theorem

Kalman Filter Derivation

Remarks
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Gauss-Markov Process

» First order Gauss-Markov process:

2ln] = azln — 1] + ufnl, >0
where u[n] is (zero-mean) white Gaussian noise (WGN)
with variance 02, z[—1] ~ N(us, 02), and x[—1]
independent of u[n], for all n.
» Are z[0], z[1],---, x[n] correlated or not? —

ANSWER: of course they are!

x[0] = ax[—1] + u[0]

z[1] = ax[0] + u[1] = a(ax[—1] + u[0]) + w[1]

» E[z[n]] = a"TE [z][-1]] = a”+ us (depends on time, i.e.,

non-stationary). .



Gauss-Markov Process

» x Covariance

=K Hamﬂ(x[ 1] — ps) + fj aFulm — k]}
k=0
{a"“(x[—u — ps) + znj aluln — Z]H
=0

= a"tm 22 4 i z”: a"* B ufm — klu[n — 1]
k=01=0

e a"+m+203 + Z Z ak+l025[l (n—m+k)]
k=01=0

'¢[—1] independent with u[n]
m—k—-(m-=m—-k—-n+l=l—(n-—m+k)
3Kronecker § : §[u] = 1, when u = () and @), when u #
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Gauss-Markov Process
» We assume m >nand 0 <[l <n,l=n—m+k, then

n—-m+k>0=k>m-n and n—-m+k<n=k<m

» Then,

m
Cs[m,n| = a"+m+2a§ + Z a"—m+2kaﬁ
=m

k -n

4
n+m+2 2 2 2k’ +m—n
= s t o, E a
k/

n
— an+m+20_§ + amfno_g Z a2k

» Properties:
® clearly not WSS since depends on time (i.e., n or n + m)
® heavily correlated |a] — 1
® heavily uncorrelated |a|] — 0

U =k —(m—n)=2k=2k"+2(m —n)
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Gauss-Markov Process

» for n > m = Cslm,n] = Csn, m|

» However, Gauss-Markov process for n — +oc:

Elz[n]] = ™' pe "2E00 i |a| <1

~
Efz[-1]]
n 1
C,[m,n] "=5° g2am " Z a?* =ola™m " —— for |a| <1
1— a?
k=0
o2
= C4[m,n| = C4[k =m—n] = 1 v 2ak, k > 0 (AR(1) process)
—a
——
auto-correlation function
2
> if Ty = 02 and jus = () then the above becomes wide-sense

stationary (WSS) for n — 400

Sif and only if
7/33



Gauss-Markov Process

» Gauss-Markov Process®: mean and variance can be

obtained recursively:

E[z[n]] = aE[z[n — 1]] + Elu[n]] = aE[z[n — 1]]

azln = 1] + ufn] - aEfz[n — 1]))?]
{a(z[n — 1] = Elz[n - 1])) + u[n]}]

var(z[n — 1)) + o2

I
S

since u[n| has zero mean, and z[n — 1] depends on z[—1]
and u[0], u[1],- -+ ,u[n — 1] which are independent of u[n|!

Sz[n] = ax[n — 1] 4 u[n]
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Theorem

» If 6 has zero mean E[@] =0 and 0,y = gl] are jointly
2
Gaussians, with y,ys uncorrelated, then
VAN
E[6]y] = E[0y1,y2] = E[0]y1] + E[6]y2]

P> Proof: since 6,y are jointly Gaussians the MSE coincides
with the linear least square estimate (LLSE):

0 = E[0]y] = E[6] + CoyC;'(y — E[y])

Cy=E [ Ve [on - BT - E[yzbﬂ
oy @] o
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Theorem

> Notice that yi1,y2 are uncorrelated:

Cio=E[[(n —Ely1]) (v2—Elys)"]]
=Efy1 ~ Ely:]] E|(y2 — Elys))"] =0-0" =0 (2)

» from (1) and (2)

0 Gy, 0 C;}
E[6]=0 Ely:1] !
= y1—Ey1
Coy = E0- y2 — Elys] {ngl CeyJ
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Theorem

» Thus,
Y 1
0 C y2 — E[y2]

0 :ME {COYI CHyz] ;2

= Coy, Cy, (y1 — Ely1]) + Coy, Cy, (y2 — Ely2])
= E[0]y1] + E[6]y2] u

c,l! o 1 lyl —E[yﬂl
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Derivation of (scalar) Kalman filter

» Random parameter to be estimated, according to a
Gauss-Markov Process:

(state equation) x[n] = az[n — 1] 4+ u[n]

m z[—1] independent of uln] ¥n
u[n] WGN (zero mean) with variance o2
and
(observation equation) y[n] = x[n] + w(n|

m u[n] zero mean with independent samples and variance o2

indepedent of time (WGN)
m w[n] zero mean Gaussian noise with independent samples
and E [w[n ] =02 (depends on time)

> 2[—1] ~ N(p62) = Ez —a”ﬂ/—
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Derivation of Kalman filter

» Problem: we wish to estimate x[n| base on the observations
{0}, y[1), y[2],- -, y[n]} or filter {y[n]} to produce Z[n]:

2 2[n|m)

[nly[0}, y[1], y[2], - - -, y[m]]
» Optimality criterion: Bayesian MSE: E [(x[n] — #[n|n])?]
MSE:  &[n|n] = E [z[n]|y[0], y[1], y[2], - - - , y[n]

z[n],y[0],y[1],y[2], - - , y[n] are linear combinations of
x[—1] plus Gaussian noise = z[n],y[0], y[1],y[2],- - - ,y[n]
are jointly Gaussians!
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Derivation of Kalman filter

>

>

TmmNBE:ILﬂiijmm%;ﬂkhﬁﬁcngﬁ(me
that E[y] = @ with y = [y[0], y[1],y[2],--- ,y[n]]")
If the Gaussian assumption is not valid, then the above

holds for the "optimal" LLS estimator. Returning to the
original problem:

We need to find a sequential estimator: if {y[n]} were
uncorrelated then

2[n|n] = E [z[n]|y[0], y[1], y[2], - - - , y[n]]]
= E [z[n][y[0], y[1], y[2], - -, y[n = 1]] + E [z[n][y[n]]
= &lnn — 1] + E [z[n]|y[n H]

however {y[n]} are NOT uncorrelated, thus a different
approach is needed.
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Derivation of Kalman filter

» Set g[n] = y[n] — g[n|n — 1], where
gln|n — 1] = E [y[n]|y[0], - - - ,y[n — 1]] (MSE estimate)

» Thus g[n| = e, which L to the data y[0],--- ,y[n — 1]
(orthogonality principle)
> Set yln—1] = [y[0] yl1] - yln—1]]
» Thus,
yln] = gln] +glnln — 1] = Z arylk] — (3)

since {y[k]} jointly Gaussians and thus MSE = LLS
(linear).

» y[n — 1], g[n| can give y[n] through (3). Thus y[n — 1], y[n]
are equivalent to y[n — 1], g[n]:

E[n|n] = Elx[n]ly[n — 1], y[n]] = E [z[n]|y[n — 1], 7[n]]
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Derivation of Kalman filter

» ¢ is error in observation: the trick is to predict y[n], which
you already know!
» g[n] uncorrelated with the observation data y[n — 1], due to
orthogonality principle.
» Thus,
E[nln] = E [z[n]ly[n — 1]] +E [z[n][g]n] (4)

Z[n|n—1]

Elnln 1] = E[ [lly[n —1]]

Elazln —1] + u[n]ly[n — 1]]
— B foln — lyln 1]
= aZ[n —1n — 1] (5)

» wu[n] is independent of {w[n|}, z[—1] and
uln — 1], uln — 2], -+, u[0]
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Derivation of Kalman filter
» Thus, E [u[n][y[n —1]] = E[u[n]] = 0
» So far:

2[n|n] = a2[n — 1|n — 1] +E [z[n]|7[n]] (6)
—

Z[n|n—1]
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Derivation of Kalman filter
> g[njn — 1] = E[y[n]y[n — 1]]

~ Efa[n]ly[n — 1)) +E [whnhytr=1]
2[nn—1]

K] (y[n] — glnln — 1])

K[n) (y[n] — &[nln — 1))

» and thus from (6),

> E[z[n]|g[n]

Z[n|n] = &lnjn — 1] +K[n] (y[n] — &ln|n —1])

az[n—1|n—1]

» it remains to calculate the gain K[n] in a recursive manner:

E [z[n] (y[n] — 2[n|n —1])]
Kn] £
E [(yln] — #[nin — 1))°]
"y[n] = z[n] + w[n] and w[n] independent to y[0],--- ,y[n — 1]
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Derivation of Kalman filter

We observe the following:
> E[z[n] (y[n] — Zn|n —1])]

= E[(z[n] — &[n|n — 1]) (y[n] — 2[n|n — 1])]

E Z[n|n — 1] (y[n] — Z[njn — 1]) ; 0

linear combination of
y[o]vy[l}v o 7y[7’l -1

> and
E[w[n] (z[n] — &njn —1])] =0

since w[n] independent (and thus, uncorrelated) to
yln =1, ,y[0].

y[n]=xn]+wln]
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Derivation of Kalman filter

_ El(z[n] = 2[nln —1]) (z[n] — Z[njn — 1])]

Kl = E [(x[n] — #lnln — 1] + w[n])?]

8 - E [(2[n] - &[njn — 1))°]
KML_ERMM—£MM—ny+ﬁ ")

= Kn] = M(n|n — 1]

Mnln — 1] + o2
» ...need recursion:
M(nln — 1) 2 E [(z[n] - 2[nln — 1])?]
= E [(azln — 1] + uln] - 2[n|n — 1))’
= E [{a(zln — 1] = &[n — 1|n — 1)) + u[n]}?]
= aE |(zln — 1] = 3[n — 1|n — 1))?] + o2

Snumerator: MSE when y[n — 1] is used instead of y[n] 20/33



Derivation of Kalman filter

» ...where the last equality is due to the

fact that u[n] is independent of x[0], z[1],-- ,z[n — 1] and
depend on z[—1],u[0], ,u[n—1]
yln—1]=[yf0] y[] - yn—1]]
= [2[0] + w[0] 2]+ w[1] -+ afn—1]+wn - 1]]

=E[(z[n—1]—-2n—1n—-1]))u[n]] =0

» Thus,

u

Minln —1] = a®E |(z[n — 1] = [0 — 1jn — 1])*| + o2
=a*Mn —1jn— 1]+ 02
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Derivation of Kalman filter

» Now we require a recursion for M[n|n]:?
M(n|n] = E [(z[n] — 2[n|n])’]

=E l{w[n} — &[njn —1] - @(y[n} — &[n|n — 1])}2]

constant as a function of n

=E [(z[n] - &[n|n — 1])°]

M[n|n—1]

~ 2K [ E| (zln] — &lnln — 1) (yln] — d[nln — 1]

from (7), numerator of K[n]=M[n|n—1]
+K°[n] E[(yln] - &[nln - 1])°]

Mn|n—1]
K[n]

denominator of K[n]=

*[n|n] = &[n|n — 1] + K[n](y[n] — &[n|n — 1] )5



Derivation of Kalman filter

» Thus,

M(n|n] = M[n|n — 1] = 2K[n]M[n|n — 1] + K[n]M[n|n — 1]
= (1 - Kin]) Mn|n —1].

*[n|n] = &[n|n — 1] + K[n](y[n] — &[n|n — 1] 255



Derivation of Kalman filter: Summary
P Prediction:

Z[n|n — 1] = ai[n — 1jn — 1]
» Prediction MSE:
Min|n —1] = a*M[n — 1|n — 1] + o2

u

» Kalman Gain:
Mn|n — 1]

Klnl = i = 1]

» Correction:
2ln|n] = 2[n|n — 1] + K[n](y[n] — 2[n|n — 1]
» Minimum MSE:
M{n|n] = (1 — K[n])M|[n|n — 1]

> ...the same for p, # 0
» Initialization:
#[-1| -1 =E[z[-1]] = s and M[-1]| —1] = o2.
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Remarks

» Remark 0:
Derived equations hold for us # () too.
> Remark 1:
m LLS estimates: LLS(0]y1,y2) = LLS(0]y1) + LLS(8]y1),
where y1, y2 uncorrelated
m orthogonality principle: e L linear combination of the data
thus, Kalman filter is the "optimal" (in MSE sense)
recursive LINEAR estimator
m if Gaussian statistics are employed = Kalman is the
"optimal" (in MSE sense) estimator!
» Remark 2:
we used Gauss-Markon process for the parameter to be
estimated
m (state equation) x[n] = ax[n — 1] + u[n]
m (observation equation) y[n] = z[n] + wn|
m E[(w[n])?] = 02 — function of n and
Ez[n]] = a" " E[z[-1]] = a" ",
thus, Kalman filer holds for non-WSS processes (we haven’t

seen that so far)!
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Remarks

» Remark 5:
Set a =1 and 02 = () = z[n] = x[n — 1] (prediction: last
estimate of x[n]).
In that case:

Z[n|n — 1] = &[n — 1]

Mn|n — 1] = M[n — 1]

&[n] = &ln — 1] + K[nl(y[n] — 2[n — 1])
Mn —1]

M[n—1]+ 0%

Mn] = (1 = K[n])M[n —1]

Kn] =

...can omit the prediction stage of Kalman.
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Remarks

> Remark 4:
Kalman filter is a time varying linear filter:
z[n|n] = az[n — 1jn — 1] + K[n](y[n] — aZ[n — 1jn — 1])
| ——
Z[nin—1]
= K[n]yln]+ a(l—-K[n]) Z[n—1n-—1]
—— —_———

time varying-constant time varying-constant

y[n] — (%) > x[n|n]

o (1-K[n]) 2t [«—

K[n]

» For n — +oo the filter becomes time-invariant
(steady-state).

27/33



Remarks

> Remark 5:
no-matrix inversion is needed (true only here). For the
vector Kalman filter, this is not true.

» Remark 6:
Minimum prediction MSE:
Mnn—-1]=E [(m[n] — Z[n|n — 1])2]
=a’M[n—1n—1] 402
Kalman Gain:

] = Min|n — 1]
02 + Mn|n — 1]

Minimum MSE:
Min[n] = (1=K [n])M[n|n—1] £ (1-K[n])E [(z[n] - &[n|n — 1])%]

Thus, M[n|n] can be computed independently of the
observation data {y[n]} = can be computed offline!
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Remarks

> Remark 7:
Kalman filter is a filter: transient response and
steady-state response. At steady-state (or n — +00) it can
be proved that M[njn — 1] > M[n — 1|n — 1]
Thus, error increases at prediction stage and decreases at
correction stage (K[n| < 1)

Min|n] = (1 — K[n])M[n|n — 1] < M[n|n — 1]

» Remark 8:
Infinite-length causal Wiener filter:

“+oo
&ln] = > hlky[n — K]
k=0

solved through Wiener-Hopf equations.
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Remarks

» Remark 8 continued:

(A) We showed that Gauss-Markov z[n] as n — 400 could
become WSS
(B) if E [(w[n])?] = 02 = 62 (time independent)

if (A), (B) hold then Kalman = Wiener

» Remark 9:
steady-state: time invariant filter for conditions (A), (B)

E[nln = 1] + K[n](y[n] — 2[n|n — 1))
az[n — 1|ln — 1] + K[n](y[n] — aZ[n — 1jn — 1])
a(l = Kloo])&n — 1|n — 1] + K[oo]y[n]

[nln]
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Remarks

» Remark 9 continued:

[n|n] — a(l = K[oo])&[n — 1fn — 1] = Kloo]y[n]
= X(2) —a(l - K[oo]) X (2)2~" = K[oq]Y (2)
Ko

D ey g

= H(z = jw) = H(z = j2rf)

» Remark 10:
Same properties for vector Kalman filter (apart from
matrix invertibility).
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Remarks

> Remark 10:
Equations of the vector Kalman filter can be found in any
estimation theory textbook.

» Derivation of the (scalar or vector) Kalman filter equations
can be performed in an elegant, simplified way, using
(modern) inference theory!

» Kalman filter = Gaussian Belief Propagation in HMMs!

> Pls take the graduate course on Probabilistic Graphical
Models and Inference Algorithms to see this.
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Thank you!
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Problem Definition & Basic Assumptions

Prediction/Correction Equations

Particle Filtering Derivation
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Problem Definition

We limit discussion on scalar case - same reasoning holds for
the vector case.

> denote as Pnlm = Pzalyo,y1, ym ($n|y07 Yty 7ym)

> again, we follow the same Detection/Estimation notation:

» 4, is the m-th measurement/observation
» z; is the 1-th random variable to be estimated ("hidden

state")
» General problem:
estimate xg, x1, - - - , T, given observations yg, Y1, - , Yn, i-€,
find pmi|y0,y1,---,yn($i|y07y17 T 7yn)7 0<i<n
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Prediction/Correction Equations (& Assumptions)

General equations, written in an iterative manner.

» Prediction Equation:
Prtin(Tnt11Y0, Y15+ 5 Yn) =/z P(Tnt1s Tnlyo, Y1, 5 Yn)dy,
:/ P(Tnt1|Tn, Yo, Y1, -+ s Yn)P(TnlYo, Y1, -+ yn)dzn
;/ (Tn+1lzn)P(Tnlyo, y1, -+ 5 Yn)doy

/" xn+ﬂxn pnM(man’yh"'vyn)dxn

previous iteration

1
zn+l J— yO:yly e 7yn|xn
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Prediction/Correction Equations (& Assumptions)

» Update/Correction Equation:

p($n+1,yn+1|y0,y1,“' ,yn)
P(Yn+11Y0, Y15+ s Yn)
P(Ynt1]Tns1, 90,15+ Yn)P(Tnt1 |0, Y1, 5 Yn)
P(Yn+11Y0, Y1, s Yn)

z

Prtin+1(Tnt1lY0, Y1, 5 YUnt1) =

2 1
= ;p(yn—i-l ’xn+1)pn+1\n($n+l|y07 Y1, 5 Yn)

» Notice that the above prediction/correction equations hold

for:
Tn+1 J—y()ayl?"' 7y7l|xn (1>
Yn+1 1 Yo, Y1, - 7yn‘xn+1 (2)
2yn+1 € Yo, Y1, - ,yn|13n+1
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Particle Filter for HMMs with General Continuous

» Egs. (1), (2) are satisfied by hidden Markov model (HMM):
@) ) @

» HMM satisfies the following:

p(mn‘xn—la Tp—2," " am()) = p($n’$n—1) (3)
» Thus, one can produce (z¢(s),z1(s),- - ,x,(s)) that adhere
NN
t0 Dag,z1, 2n () = Dag,ar, o (X0, T1, -+, Ty as follows:

20(8) ~ Pao(+); i(8) ~ Payja,_, (lrica(s)), i =1,---,n (4)
» Note that due to (3),
prvxlv‘“ »Tn (xg) = Pxo (ZU()) pr¢|x¢,1($i|$i—1)

=1
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Particle Filter Derivation

» HMM also satisfies the following:

p(yn’xn, Tn—1,Yn—1,Tn—2,Yn-2," " , 20, yO) = p(ynlxn)

thus,

p(yn,yn—1,° e 7y0|$na$n—1a T 7$0) =
:p(y’l’b|yn—17"' y Y0, Ty Tp—1y " ° 7:60)
'p(yn—17”' 7y0|$n7xn—17"' 7:60)

(6)
= p(yn|xn)p(yn—17 o 7y0’x7’b7$’n—17 e ,$0)

Working inductively,

n
PWUnsYn—1, > YolTn Tno1, -+ x0) = [ [ Pyajs (Wilzs)  (5)
i=0
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Particle Filter Derivation

» 1,1 separates Yn_1, - ,yo from z, and thus (6):

Yn—1,""" 7y0an|$n—17xn—27”' , L0 (6>

» In HMM-particle filtering, we are given p(z;|z;—1) and
p(yilri), 0<i<n

» Thus,’
p(olxg)p(xg)
pmmmh“wInmeh"wyn(xgwyg>:: p(yg)
n
Pzo,z1, @0 (ﬁg) H DPy;|x; (yl |x1)
=0
= (7)
Pyo.y1, yn (Y0)
—_———
z — unknown (i.e., hard to compute) constant
3notation: zf = xo,x1, -+ ,Tn and Yy = Yo, Y1, - ,Yn
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Particle Filter Idea

» Particle filtering idea:
1) Produce samples that adhere to
Daoz1, o [yosys s syn (L0 Y0 ) Without knowing z.

2) These samples can be used to estimate any E [f(x})],
Pal |yl

for any function f(-) as if one perfectly knew the p.d.f.
pw51|yg('|yg)-
» We do not know z; can only produce as many samples

{(zo(s),z1(8), - ,xn(s)}, s=1,---,S according to known

pri\fﬂi (y2|xl)
=0

» Particle filtering is a a case of non-parametric modeling, since we
do not know the posterior p.d.f. in closed form pap|yn (-[y5)-
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Example

» In localization research, we need the conditional mean
(i.e., MMSE estimator):

E [f(25)] = Elznlyo, y1, -+ ual

n|,n
pIO |y0
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Importance Sampling

» Theory to solve the above problem =- Importance
Sampling:

Q(-’L') <+ known function
M(x) = z < unknown function

We want samples from p(-) so that we can compute the
following:

B, [f(2)) 2 [ f(@)n(a)de
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Important Sampling Algorithm
» Important Sampling algorithm:
1) Produce samples x(1),z(2), - ,2(s), -+ ,2(S) from known
distribution v(z), called the "proposal" distribution;
2) Compute as many weights as the samples, according to

1S
<> w(s)
S s=1

» Definition: support of function p(z)(supp(p))

supp(p) = {= : p(z) > 0}

13/21



Important Sampling Algorithm: Theorem

» Theorem 1: Let supp(u) C supp(v). Then for S — 400

A

E(S) = E,[f(x)], with probability 1

Large numbers
expected value in terms of
v(z) because we have samples from
the "proposal" pdf v(z)

. 1 strong Law of
lim = w(s)f(x(s)) s By w - f(x)]

Eufo- @) = B, | 28 1(0)] - [ . ke -
S IR CICOESy NIRRT

supp(p)

“q(z) =0V = ¢ supp(p)
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Important Sampling Algorithm: Theorem

» Proof continued:
similarly,

S—+o0 Large numbers

1 S strong Law of Q(x) 5
lim —E w(s)—HEUw:/ — dr =
S s—1 = supp(v) MM

= q(z)dx =
supp(p)

1
= ZW: z
pp (1)

9)

from (8) and (9) = proof is completed. W

°q(x) =0V x ¢ supp(p)
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Remarks

» It is worth noting that as long as supp(u) is contained in
supp(v), the estimation converges irrespective of the choice
of v.

v(x) p(x)

_

»
»

Figure 1: Area where proposal distribution obtains small values,
as opposed to true distribution; that amplifies the number of
required samples.

» However, the choice of v determines the variance of the
estimator and hence the number of samples S required to
obtain good estimation.
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Back to HMM-PF

> Need to estimate E [f(xf)|yd]

Paltygy
> Set .
4(x8) = Proar, o (8) [ Pysfas (wil)
i=0
> Set
v(zg) = prior = pug ey, a0, (26)
» For any given (zg,z1,- -+ ,zy) = x sample, calculate the

corresponding weight as follows:

n_ 9@8) O
Wy = ?L = prl|xl(yz|xl)

w(ag) oy M

o
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HMM-PF Summary

> Thus, for given yo, Y1, ,Yn = yg
1) Obtain § iid samples zj(s), 1 < s < S according to
Pao,ar, ()

2) Compute S corresponding weights

wy (s) = HP(?M%(S)) Vs, 1<s<S8
i=0

3) Output estimation of E [f(xo, 21, ,Zn)|Y0, Y1, s Yn)
Pzg\yg
S
> wi(s)f(g(s))
s=1
as 5 )
> wp(s)
s=1
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» The above estimator can be implemented in a sequential
fashion, exploiting the HMM properties:

>

>

for given s in {1,2,--- ,S}
Sample mk+1(8) ~ pﬂ?k+1|xk('|mk(s)>

compute
k+1 _ k+1
) (S) = Wy (S) Pyiir|zrir (yk+1|xk+1(8))
—— ———
corresponding weight for
weight for sample x (s)
particle xp41(s)

repeat for all k£ up ton and all sup to S

re-sample the weights/particles before you proceed to next
k + 1 (particle depletion problem)
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>

>

Can we extend particle filtering to other probabilistic
graphical models (PGM), other than HMMs?

Answer: YES, using mixture of Gaussians and producing
samples based on specific Markov chain Monte Carlo
(MCMC) techniques: say p(z) = @ (z — unknown
constant)

You can craft a Markov chain (MC) that produces samples
according to p(x), even though the MC was built using
q(x) — Metropolis-Hastings technique (Gibbs sampling is a
special case).

...you can take graduate class Probabilistic Graphical
Models and Inference Algorithms to see the above!
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Thank you!



