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Goals of Time Series Analysis

Are there trends in the data?

Are there seasonal variations, periodicity ?

Are there remaining temporal correlations (correlated residuals) ?

Can the data be used to build time series models suitable for forecasting
future values of the process ?

How to estimate the parameters of a time series model?

What is the accuracy and the reliability of forecasting models?
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Overview I

1 Introduction to R
Data Importing in R
Plotting Time Series

2 Review of fundamental concepts
Stochastic processes (discrete and continuous)
Expectation and autocorrelation functions
Stationarity
Frequency-domain analysis

3 Time series models
Autoregressive models
Moving Average Models
Box-Jenkins (ARIMA) Approach
SARIMA Models
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Overview II

4 Regarding Non-Stationarity
Stationarity tests
Heteroskedasticity

5 Nonlinear Transforms

6 Parameter Estimation
Method of moments
Method of least squares
Maximum likelihood estimation method
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Overview III

7 Forecasting methodologies
Stationary time series
Forecasting Non-Stationary Time Series
Holt-Winters Model

8 Model Assessment
Optimal model selection
Cross validation analysis
Analysis of Residuals
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Introduction to R
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Introduction to R

R is a free updated version of S-Plus (developed by Bell Labs)

R is distributed by CRAN (“Comprehensive R Archive Network”)

Linux, MACOS X and Windows versions can be downloaded and
installed from the CRAN web-site.

R has more flexible and powerful features for data handling, processing
and graphical presentation than software such as Microsoft Excel.

R uses a command-line interface (hence steeper learning curve)

RSTUDIO is an Integrated Development Environment for R, which can be
downloaded here.
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Introduction to R

Loading data in R is not trivial. Different file types require different R
functions.

For an introduction to data importing in R see here.

It is useful to know R since it is widely used in data analysis.

You can do the time series analysis in Matlabr using the
econometrics toolbox.

You can also play with the Matlabr time series analysis and forecast
TSAF package which offers a GUI environment.

TSAF requires the econometrics toolbox.
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Time Series Analysis in R

Functions available in the base R package
acf Sample autocorrelation function. User can specify maximum lags, or a vector

of required lags.
pacf Sample partial autocorrelation function

arima Fits a SARIMA model of order (p, d, q) × (P,D,Q), with period s. Fitting
method can be chosen from: ML Maximum Likelihood; CSS Minimising con-
ditional sum of squares; CSS-ML Conditional sum of squares to find starting
values, followed by ML.

predict Predicts n steps ahead from any fitted model, incl. time series fitted using
arima

arima.sim Simulates an ARIMA model of specified length, order (p, d, q), and specified
innovations variance

tsdiag 3 standard diagnostic charts for a fitted ARIMA model: (1) plot of residuals from
the model; (2) Sample ACF of residuals; (3) Ljung-Box portmanteau statistic
for specified maximum number of lags

spectrum Spectral density using one of two methods: (1) “periodogram” – based on FFT,
optionally smoothed; (2) “autoregressive” – based on the spectral density of
fitted AR model.
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Time Series Analysis in R

Specialized Time Series Analysis Packages
zoo Functions for both regularly- and irregularly-spaced time series.

tseries Contains fitting and prediction for specialised time series models, e.g. GARCH
(Generalised AutoRegressive Conditional Heteroscedastic) model

cts Continuous-time AutoRegressive models.

dse Dynamic Systems Estimation—tools for multivariate, time-invariant models in-
cluding state-space representations.

dlm Bayesian and likelihood analysis of Dynamic Linear Models.

sspir Tools for the specification of formulas that can be used to define and fit state-
space models.

astsa Time series analysis package used in the book of Shumway & Stoffer.

To install packages use: install.packages("astsa")

To use the package it should be loaded: require("astsa")

To update the packages use: update.packages(ask=FALSE)
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Time Series Datasets in the R Environment

Several datasets are available for time series analysis with base R

Such datasets may have been formulated into a ts (time series) class object

These data can be recalled simply by inputting the dataset name at the command prompt.

Example: AirPassengers
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Time Series Datasets in the R Environment

Example: sunspot.month Monthly Sunspot data from 1749 to 1997
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Reading and plotting from external data files
Let us consider the .csv file Recife.csv which contains monthly
temperature values from Recife (Brazil).
The data are organized in a single column.
To read the data we use (modify the path accordingly):

recife=ts(read.csv("D:\\Data\\Recife_v.csv",header=FALSE),
start=1953,frequency=12)

To view the data we call the variable name defined above:

recife
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Reading and plotting from external data files
To plot the data we use the command:

plot(recife,ylab=’Temperature (degree C)’, xlab=’Year’,main=
’Recife, Brazil Temperature Data’)

The resulting plot is:
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Reading and plotting from external data files

Plotting CO2 atmospheric concentration data in parts per million (ppm)a

> plot(co2, ylab = expression("Atmospheric concentration of
CO"[2]), las = 1)

> title(main = "CO2 data set")

What does “las=1” do? It provides control over the label orientation:

1 las=0 produces labels placed parallel to their axes
2 las=1 produces labels horizontally oriented
3 las=2 produces labels which are at right-angles to the axis
4 las=3 produces labels which are vertically oriented.

aKeeling, C. D. and Whorf, T. P., Scripps Institution of Oceanography (SIO), University of
California, La Jolla, California USA.
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Reading and plotting from external data files
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Review of fundamental concepts
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Introduction to stochastic processes
A stochastic process is a random function that evolves in time ⇒multiple
realizations (states).
We can consider the stochastic process as a sequence of random
variables that depends on time.
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Introduction to stochastic processes

Mathematical definition
A scalar stochastic process X(t;ϑ) is a collection of random variables
X(t;ϑ); t ∈ T defined in a probability space (Ω,F , P ), and which depends on
a set of time instants T .

Reminder: how to define the probability space
Sample Space Ω: Set of all possible states.

Event Space F : Set of events. Each event is a set of states of Ω.

Probability function P : Assigns to each event in the space F a probability,
i.e. a number between 0 and 1.

The expectation E[·] denotes an average over the entire sample space.
For example, E[X] =

∫∞
−∞ dxx fX(x).
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Introduction to stochastic processes

What is the set T
The set T can be one of the following: R1,R+ = [0,∞),
Z = {. . . ,−1, 0, 1, 2, . . .}, Z+ = {0, 1, 2, . . .}
For a given state ϑ the stochastic process X(t;ϑ)—for short X(t)—is a
function of time.
When referring to specific states (realizations) we will use lower case
letters, i.e. x(t).
When we focus on a specific time t the stochastic process is reduced to a
random variable.
The symbol x(t) can denote either the stochastic process or an
implementation of it depending on the context.

What is ultimately a stochastic process
A stochastic process X(t;ϑ) is a function of time whose values are random
variables for each t ∈ R
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Introduction to stochastic processes

What is the connection between stochastic processes and time
series?

A stochastic process is a probabilistic model.

The term time series is used in different ways:
1 For a temporal sequence of values (xt1 , xt2 , . . . xtn) indexed by a discrete

set of times {ti}ni=1.

2 For a discrete sample (e.g., measurements) of a continuous in time function
x(t).

3 For a discrete sample of a realization x(t) of the stochastic process X(t;ϑ).

Herein, time series will refer to a discrete sample, Xt of a stochastic
process X(t;ϑ).

(GSLAB) D. Hristopulos: dchristopoulos@tuc.gr Introduction to TSA with R 14/68October 13, 2023 14 / 68

http://www.geostatistics.tuc.gr/4908.html


Introduction to stochastic processes

Auto-covariance and auto-correlation functions
The auto-covariance function is defined as follows:

CX(t1, t2) =E[X(t1;ϑ)X(t2;ϑ)]− E[X(t1;ϑ)]E[X(t2;ϑ)]

=E[X(t1;ϑ)X(t2;ϑ)]− µ(t1)µ(t2)

=E [{X(t1;ϑ)− µ(t1)} {X(t2;ϑ)− µ(t2)}] . (1)

The variance is given by the covariance evaluated at the same time:
σ2
X(t) = CX(t, t).

The (auto-) correlation function is defined as follows:

ρX(t1, t2) =
CX(t1, t2)

σX(t1)σX(t2)
. (2)

It general, ρX(t1, t2) ∈ [−1, 1] (based on the Cauchy-Schwartz
inequality).

Admissible covariances are non-negative (positive) definite functions.

(GSLAB) D. Hristopulos: dchristopoulos@tuc.gr Introduction to TSA with R 14/68October 13, 2023 14 / 68

http://www.geostatistics.tuc.gr/4908.html


Fundamental concepts of time series

Example: Number of solar spots

Sunspots: Disturbances of the
solar magnetic field
Part of the solar activity cycle with
a “period” of about 11 years
Associated with geomagnetic
storms
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Fundamental concepts of time series

What questions are we concerned about?
What is the physical mechanism—the system—the process that creates
sunspots?

Is the time series a periodic system with noise admixture?

Is the system stochastic?

Or is the process chaotic? (non-linear dynamic system)?

Can we predict the number of sunspots?
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Fundamental concepts of time series

Examples of time series in Bonn dataset. Sets A and B: EEG of healthy volunteer; sets C and D:
iEEG for a patient during a seizure-free interval; set E: iEEG for a patient during epileptic seizure.
Domingues, O. et al. (2019). Multifractal Analysis for Cumulant-Based Epileptic Seizure Detection
in Eeg Time Series. 143–146. doi: 10.1109/ISBI.2019.8759288.
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Fundamental concepts of time series

Objectives of time series analysis
Understanding the time-dependent structure of observations in a single
series and identifying patterns (univariate analysis)

Filling gaps

Forecasting the future

Generation of realizations, exploration of possible scenarios (stochastic
simulation)

Determining causal links and flow of information between different
variables (multivariate analysis)
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Fundamental concepts of time series

Difficulties encountered in time series analysis
Limited duration (small time series length)

Limited resolution (large time step/ low frequency sampling)

Often a single realization is available

Lack of stationarity

Noise admixture

Stochastic trends
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Fundamental concepts of time series

Some definitions
The observed quantity is the variable X.

Observations are usually made with a uniform time step (sampling step).

The time series consists of a set of values {x1, x2, . . . , xN} at N different
times t1, t2, . . . , tN .

We will also refer to a time series as {xt}Nt=1 and if necessary as the
vector x = (x1, . . . , xN )>.

For multivariate time series we will denote the i-th component by the
vector xi = (xi;1, . . . , xi;N )>, i = 1, . . . ,M .

At any given time t the value xt of the time series can be viewed as a
realization of the random variable Xt(ϑ) or Xt for short.

For regular sampling (without gaps) with sampling step δt it holds that
tn = nδt, n = 1, 2, . . ..
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White Noise

In the strong sense: A stochastic process ε(t;ϑ) is considered white noise, if it is a
sequence of independent identically distributed (i.i.d.) zero-mean random variables εt(ϑ),
i.e., εt(ϑ) is independent of εt′ (ϑ) for all t 6= t′.

“Weak” sense: The values of εt1 (ϑ) and εt2 (ϑ) are uncorrelated for every t1, t2 6= t1.

Properties of
discretely-sampled white time

E[ε(tn)] = 0, n = 1, 2, . . .

E[ε(tn) ε(tm)] = σ2δn,m

δn,m : Kronecker delta

δn,m = 1, ifn = m,

δn,m = 0, ifn 6= m.
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Expectation and autocorrelation functions

1 Expectation: E[Xt] ,
∫∞
−∞ dxx fX(x; t).

2 µt , E[Xt] is the deterministic part which contains the trend and
seasonal component of the time series.

3 Fluctuation: X ′t = Xt − µt.

4 (Auto-)covariance function: Ct,t′ , E[(Xt − µt)(Xt′ − µt′)].

5 Variance: σ2
X(t) , E[X2

t ]− E2[Xt] = E[X ′2t ]

6 (Auto-)correlation function: ρt,t′ ,
Ct,t′

σt σt′
.

In time series analysis the following decomposition is often used:

Xt = Tt + St +X ′t, (3)

where Tt is the trend, St is the seasonal component, and X ′t is the stochastic
component.
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Stationarity
Stationarity implies that the statistical properties of a time series do not
change over time.

In the weak sense (also, second-order, wide-sense), stationarity requires
that the following relations hold:

1 The expectation, µt , E[Xt] is independent of time, i.e., µt = m.

2 The centered auto-covariance function, Ct,t′ , E[(Xt − µt)(Xt′ − µt′)] is a
function purely of the time difference (time lag), i.e., Ct,t′ = Ct−t′ = Ct′−t.
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Time series models
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Fundamentals of Time Series Modeling
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Fundamentals of Time Series Modeling
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Fundamentals of Time Series Modeling

Methodological Steps of Time Series Analysis
Model Identification

– Time Series plot
– Check for the existence of trend and/or seasonality
– Check for sharp changes
– Check for possible outliers

Trend and seasonal component removal to obtain stationary residuals
Estimation

– MME (method of moments)
– MLE (maximum likelihood estimation)

Diagnostic Checking
– Normality of error terms
– Independence of error terms
– Constant error variance (Homoscedasticity)

Forecasting
– Exponential smoothing methods
– Minimum MSE (mean-square error) forecasting
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Fundamentals of Time Series Modeling

White Noise (WN) Process: The Basic Building Block for Linear
Time Series

WN time series: {εt}Nt=1

Zero mean: E[εt] = 0

Variance: E[ε2t ] = σ2
ε

Delta correlation: E[εt εt′ ] = σ2
ε δt,t′

1 Gaussian white noise (GWN):
εt ∼ N (0, σ2

ε )

2 Independent white noise:
f(εt, εt′) = f(εt) f(εt′).

IWN is a stronger condition.
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Fundamentals of Time Series Modeling

How to measure correlations
Definition of auto-covariance function:
ct,t+τ = E [(Xt+τ − µt+τ ) (Xt − µt)]

Definition of auto-correlation function: ρt,t+τ =
ct,t+τ
σt σt+τ

τ : Time lag.

The concept of stationarity
The basic idea of stationarity is that the probability laws governing the
process do not change with time.

A process is second-order stationary or simply weakly stationary if (i) the
mean and the variance are constant and (ii) the autocovariance function
depends only on the time lag τ , not on the time t.

E[Xt] = µ, Var(Xt) = σ2, cτ = E [(Xt+τ − µ) (Xt − µ)] .
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Fundamentals of Time Series Modeling

Are the Following Processes Stationary?

(1) Xt = µ+ εt

(2) Xt = a t+ εt
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Fundamentals of Time Series Modeling

Are the Following Processes Stationary?

Stationary processes: Fast decline of correlations with time lag.

Non-stationary processes: The correlations decline very slowly.
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Fundamentals of Time Series Modeling

The Meaning of Ergodicity
Model parameters are not known a priori; they should be estimated from
the sample data.

A process is called ergodic with respect to some population parameter, if
this parameter can be precisely estimated from a single sample (time
series).

Xt is ergodic in the mean of µ = E[Xt] = limT→∞
1
T

∑T
t=1 xt.

A second-order stationary process is ergodic with respect to the mean
and second-order moments, if the sum of the absolute autocovariance
values is finite:

∑∞
k=1|ρk| <∞.

Gaussian processes are therefore ergodic if
∑∞
k=1|ρk| <∞.
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Fundamentals of Time Series Modeling

Different Modes for Time Series Dynamics
1 Moving Average (MA) processes

2 Autoregressive (AR) processes

3 Autoregressive Moving Average (ARMA) processes

4 Autoregressive Integrated Moving Average (ARIMA) processes

5 Autoregressive conditional heteroscedastic (ARCH) processes and
GARCH (nonlinear)

6 Self-Exciting Threshold AutoRegressive (SETAR) models exhibit regime
switching behavior (nonlinear)

7 Vector Autoregressive (VAR) processes (multivariate)

8 ARIMA with exogenous variables (ARIMAX) model (multivariate)
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Autoregressive Models
Autoregressive of Order p: AR(p)

Linear model with memory of p steps from the past

Xt = φ1Xt−1 + φ2Xt−2 + . . . φpXt−p + εt,

The time series {εt} is white noise (typically Gaussian), εt ∼ N (0, σ2
ε ).

The process {εt} is called innovation process.

Important facts:
The value of the TS Xt is independent of future innovations.

The innovations εt are independent of past values of the TS.

Short form of AR equation: Xt =
∑p
i=1 φiXt−i + εt.
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Autoregressive Models
The time shift operator B

Time shift operator: BXt = Xt−1

Bn = BBn−1 =⇒ BnXt = Xt−n.

Short-hand expression of AR(p) model: Φ(B)Xt = εt.

φ(B) = 1− φ1B − φ2B2 − . . . φpBp.

φ(B) is the characteristic polynomial.
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Autoregressive Models
Stationarity Condition for AR Models

AR(p) equation based on time shift operator: φ(B)Xt = εt, where

φ(B) = 1− φ1B − φ2B2 − . . . φpBp

is the characteristic polynomial.

Theorem: The time series Xt which satisfies φ(B)Xt = εt is stationary if
and only if the roots of the characteristic polynomial

φ(z) = 1− φ1z − φ2z2 − . . . φpzp, where z ∈ C

are outside the unit circle in the complex plane.

Corollary: The roots of the reciprocal characteristic polynomial

φ′(z) = zp − φ1zp−1 − φ2zp−2 − . . .− φp

should respectively lie inside the unit circle.
See Box, Jenkins, Reinsel, Ljung, (2016). Time Series Analysis: Forecasting
and Control, Wiley.
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Autoregressive Models
Autoregressive process of order 1, AR(1)

Innovation equation: Xt = φXt−1 + εt.

Characteristic polynomial: φ(z) = 1− φ z, root: z = 1/φ.

Stationarity condition: |φ| < 1.

Expectation: E[Xt] = φE[Xt−1] + E[εt] =⇒ E[Xt] = φE[Xt−1]. Due to
stationarity it holds that E[Xt] = E[Xt−1] =⇒ E[Xt] = 0.

Variance: X2
t = φ2X2

t−1 + ε2t + 2φXt−1εt.

Since E[Xt−1 εt] = 0 and E[Xt] = 0 it follows that:

E[X2
t ] =φ2 E[X2

t−1] + E[ε2t ] =⇒ Var[Xt] = φ2 Var[Xt−1] + σ2
ε

=⇒ σ2
X(1− φ2) = σ2

ε =⇒ σ2
X =

σ2
ε

1− φ2
.
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Autoregressive Models
AR(1) Auto-covariance function

Auto-covariance at lag 1: c1 = E[XtXt−1].

c1 = E[ (φXt−1 + εt)Xt−1] = φE[X2
t−1] + E[εtXt−1] = φE[X2

t−1] = φσ2
X .

Auto-covariance at lag n ≥ 1: cn = E[XtXt−n]

cn = E[ (φXt−1 + εt)Xt−n] = E

[(
φnXt−n +

n∑
k=1

φk−1εt−k+1

)
Xt−n

]

= φn E[X2
t−n] +

n∑
k=1

φk−1 E[εt−k+1Xt−n] = φnσ2
X .

In the above, we used repeatedly the Eq. AR(1): Xt−k = φXt−k−1 + εt−k
in order to express Xt as a sum of Xt−n and the innovations εt−k+1,
k = 1, . . . , n.

We also used the independence of Xt−n on future values, Xt−n+k
(where k > 0), of the innovation process.
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Autoregressive Models
AR(1) Auto-covariance function

cτ = φτσ2
X =⇒ ρτ = cτ

σ2
X

= φτ for τ ≥ 0. For τ < 0 by symmetry it holds
that ρτ = φ−τ .

The above implies exponential dependence of the ACF on the time lag:

ρτ = φ|τ | =


exp(τ log φ) = exp(|τ | log|φ|), 0 < φ < 1,

(−1)τ exp(|τ | log|φ|), −1 < φ < 0,

Since |φ| < 1 it holds that log|φ| < 0.

Hence, if we define the correlation time τc = −1/ log(|φ|) > 0 the ACF
declines exponentially as

ρτ = (sign(φ))
|τ |

exp (−|τ |/τc) .
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Autoregressive Models
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Autoregressive Models
Yule-Walker equations for general AR(p) Models
For stationary AR(p) models, the coefficients and the correlation functions are
related via the system of Yule-Walker equations:

1 ρ1 ρ2 . . . ρp−1
ρ1 1 ρ1 . . . ρp−2
ρ2 ρ1 1 . . . ρp−3
. . . . . . . . . . . . . . .
ρp−1 ρp−2 . . . ρ1 1



φ1
φ2
φ3
. . .
φp

 =


ρ1
ρ2
ρ3
. . .
ρp

 ,

If the correlations are estimated from the ACF function, the Yule-Walker system
can be solved to obtain estimates of the model coefficients.
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Autoregressive Models
The Concept of Partial Autocorrelation Function (PACF)

In an AR(1) time series the value Xt is based on the preceding value,
Xt−1, and the innovation, εt, which is independent of the past values
{Xt′ , t

′ = 1, 2, . . . t− 1} of the process.

Xt+1 is correlated with Xt but also with Xt−1 due to the correlation of the
latter with Xt.

Likewise, Xt+1 is also correlated with Xt−1 etc. Recall that ρτ = φτ .

How to test for direct dependence between Xt+1 and Xt−1, Xt−2, . . .?
For the AR(1) model we know that such dependence does not exist.

In more general cases, the answer to this question is provided by the
partial autocorrelation function:

πτ = Corr [Xt+τ , Xt | Xt+1 = xt+1, Xt+2 = xt+2, . . . Xt+τ−1 = xt+τ−1]
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Autoregressive Models
Calculation of PACF

The ACF values are linked to the PACF values, e.g., π1 = ρ1,
π2 =

(
ρ2 − ρ21

)
/
(
1− ρ21

)
. However, these relations are quite complex for

larger lags.

In AR(p) models, Xt =
∑p
i=1 φiXt−i + εt, the following two relations hold:

(R1) πp = φp and (R2) πτ = 0 for τ > p.

(R1) holds because φp completely determines the dependence of Xt on
Xt−p when the intermediate values are fixed.

(R2) holds because Xt does not depend directly on Xt−τ for τ > p.

These properties are used in the R programming environment for PACF
calculation:

1 Estimates π̂k, k = 1, . . . , p are obtained by fitting models AR(k), k = 1, . . . , p
to the time series.

2 Then π̂k = φ̂k,k where φ̂k,k is the estimate for the k-th lag coefficient τ = k in
the model AR(k).
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Autoregressive Models
PACF Estimation using AR(k) Models
Fit the data to AR(1) model and use
Yule-Walker equations

k = 1, φ1,1 = ρ1 = π1

k = 2, φ2,2 =

∣∣∣∣ 1 ρ1
ρ1 ρ2

∣∣∣∣∣∣∣∣ 1 ρ1
ρ1 1

∣∣∣∣ =
ρ2 − ρ21
1− ρ21

.

k = 3, φ3,3 =

∣∣∣∣∣∣
1 ρ1 ρ1
ρ1 1 ρ2
ρ2 ρ1 ρ3

∣∣∣∣∣∣∣∣∣∣∣∣
1 ρ1 ρ2
ρ1 1 ρ1
ρ2 ρ1 1

∣∣∣∣∣∣
.

Fit the data to AR(k) model, and use Yule-Walker
equations

φk,k =

∣∣∣∣∣∣∣∣∣
1 ρ1 ρ2 . . . ρk−2 ρ1
ρ1 1 ρ1 . . . ρk−3 ρ2
ρ2 ρ1 1 . . . ρk−4 ρ3
. . . . . . . . . . . . . . .
ρk−1 ρk−2 ρk−3 . . . ρ1 ρk

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
1 ρ1 ρ2 . . . ρk−2 ρk−1

ρ1 1 ρ1 . . . ρk−3 ρk−2

ρ2 ρ1 1 . . . ρk−4 ρk−3

. . . . . . . . . . . . . . .
ρk−1 ρk−2 ρk−3 . . . ρ1 1

∣∣∣∣∣∣∣∣∣
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Autoregressive Models
What happens if the AR(p) model contains a constant term?

Consider the innovation equation: Xt = φ0 + φXt−1 + εt.

Then, E[Xt] = φ0 + φE[Xt−1]⇒ µ = φ0 + φµ, where µ = E[Xt].

Hence,

µ =
φ0

1− φ
.

Therefore, it is easy to construct an AR(1) model with a finite expectation.

The same approach (i.e., using a constant offset), can be used for
general AR(p) models (p > 1) as well.

µ =
φ0

1−
∑p
i=1 φi

.
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Moving Average Models

Moving Average of Order One MA(1)
Innovation equation: Xt = εt − θεt−1, εt ∼ N (0, σ2

ε ).

Equivalent form: Xt = θ(B) εt, where B[εt] = εt−1 and θ(B) = 1− θB.

Characteristic polynomial: θ(z) = 1− θ z with root z = 1/θ.

Invertibility condition: |θ| < 1 =⇒ εt = θ−1(B)[Xt].

An MA model is invertible if it is equivalent to a converging infinite order AR model.
Convergence means that AR coefficients decrease to zero as the time lags increase.

Expectation: E[Xt] = E[εt]− θE[εt−1] =⇒ E[Xt] = 0.

Variance: X2
t = ε2t + θ2ε2t−1 − 2θεt−1εt. This implies

E[X2
t ] =E[ε2t ] + θ2 E[ε2t−1]− 2θ���

��:0
E[εt−1εt] =⇒ σ2

X =
(
1 + θ2

)
σ2
ε .
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Moving Average Models

MA(1) Autocorrelation Function
Covariance at lag one: c1 = E[XtXt−1].

c1 =E[ (εt − θ εt−1) (εt−1 − θ εt−2)] = −θ E[ε2t−1] +���
���:

0
E[θ2 εt−1 εt−2]

−���
��: 0

E[θ εt εt−2] +��
���: 0

E[εt εt−1] = −θσ2
ε .

Hence ρ1 = −θ
1+θ2

.

Covariance at lag n > 1: cn = E[XtXt−n]

cn = E[ (εt − θ εt−1) (εt−n − θ εt−n−1)] = −θ���
��: 0

E[εt−nεt−1]

+
���

���
��: 0

E[θ2 εt−1 εt−n−1] −���
���:

0
E[θ εt εt−n−1] +��

���: 0
E[εt εt−n] = 0.

Thus in the MA(1) model auto-covariance and auto-correlation vanish for τ > 1.

This property is generalized to MA(q) models.
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Moving Average Models

Higher-Order Moving Average Models MA(q)
Innovation equation: Xt = εt −

∑q
i=1 θiεt−i.

Properties of MA(q) model:

σ2
X =σ2

ε

(
1 + θ21 + . . . θ2q

)
,

cτ =σ2
ε

−θτ +

q−|τ |∑
j=1

θjθj+|τ |

 , τ = 1, . . . , q,

cτ =0, τ > q.
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Moving Average Models

Covariance function of MA(1) model
Consider an MA(1) model with θ. Then ρ1 = −θ

1+θ2
.

The same ACF value is obtained if θ → 1/θ.

However, between the two models only that with |θ| < 1 is invertible.

Example:

The time series Xt = εt − 0.4εt−1 and
Xt = εt − 2.5εt−1 share the same ACF:
ρ1 = −1/2.9 and ρn = 0, n ≥ 2.

However, only Xt = εt − 0.4εt−1 is
invertible.
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Moving Average Models

PACF of MA(1) Model

π1 = ρ1 = −θ
1+θ2

π2 = − ρ21
1−ρ21

= −θ2
1+θ2+θ4

π3 =
ρ31

1−2ρ21
= −θ3

1+θ2+θ4+θ6

πτ = − θτ (1−θ2)
1−θ2(τ+1)
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The Box-Jenkins (ARIMA) Approach
The basic steps of the the Box-Jenkins methodology

ARMA model : Xt = φ0 + φ1Xt−1 + . . .+ φpXt−p + εt − θ1εt−1 − . . . θqεt−q.

1 The Box-Jenkins approach assumes that the series is stationary. The
series is differenced (if necessary) to achieve stationarity.

2 Seasonal differences can be applied to remove cyclical behavior.
3 Identification of a tentative ARMA or ARIMA model for the stationary

component.
4 Estimation of the model (maximum likelihood is the preferred method).
5 Diagnostic checking of the residuals (goal: normally distributed,

uncorrelated, constant mean and variance)
6 If the model is found inadequate (residual checks fail) return to step 2.
7 The optimal ARMA (ARIMA) model is used for forecasting and control.
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The Box-Jenkins (ARIMA) Approach
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The Box-Jenkins (ARIMA) Approach
Using the ACF for Model Identification

ACF shape Suggested Model
Exponential decay to zero AR(p) model. PACF plot indi-

cates correct p
Decay to zero with alternating
± values

AR(p) model. PACF plot indi-
cates correct p

Mostly zero values with a few
spikes

MA(q) model; q = maximum lag
with ACF6= 0

Decline starting after a few lags ARMA model
All ACF values zero or close to
zero

Random data

High values occurring at fixed
intervals

Seasonal AR model

Very slow decay Non-stationary series

Source: Wikipedia
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The Box-Jenkins (ARIMA) Approach
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The Box-Jenkins (ARIMA) Approach
Estimating ARIMA(p,d,q) orders

The order d in ARIMA(p,d,q) stands for the number of times the series
has been differenced to achieve stationarity.

The order p in ARIMA(p,d,q) measures the order of the autoregressive
component.

If the time-series has an autoregressive order of 1, called AR(1), then
only the first partial autocorrelation coefficient should be significant.

If it has an AR(2) structure, then only the first and second partial
autocorrelation PACF coefficients should be significant. (Note, that they
could be positive and/or negative; what matters is the statistical
significance.)

Generally, the partial autocorrelation function PACF will have significant
correlations up to lag p, and will quickly drop to near zero values beyond
lag p.
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The Box-Jenkins (ARIMA) Approach
Estimating ARIMA(p,d,q) orders

The order q measures the order of the moving average component.

To get an idea of what orders to consider, we examine the autocorrelation
function (ACF).

If the time-series is a moving average of order 1, called an MA(1), only
one ACF coefficient at lag 1 is significant. An MA(1) process has a
memory of only one step.

If the time-series is an MA(2), only two ACF coefficients, at lags 1 and 2
are significant. An MA(2) process has a memory of only two steps.

Generally, for a time-series that is a an MA(q), the ACF has significant
correlations up to lag q, and quickly drops to near zero values after lag q.
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The Box-Jenkins (ARIMA) Approach
Selection of the Optimal Model

Schwartz Bayesian Criterion (SBC): SBC = −2 logL+ k logN

k = p+ q + 1 is the number of model parameters estimated

N is the sample size

L is the likelihood of the model which essentially depends on the sum of
the squared residuals

The model with the lowest SBC measure is considered “optimal”

SBC can be positive or negative.

Other selection criteria (e.g., AIC and modifications) are possible

Important: A model’s goodness of fit to the data should not be solely
judged by the selection criterion: it should also be checked that the
residuals are consistent with the white noise model.
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SARIMA Models

1 ARIMA models involve an autoregressive term and a moving average
term.

2 The integration element, “I”, refers to the differencing operation used to
remove potential trends.

3 ARIMA models cannot handle data with seasonal behavior.

4 However, ARIMA can be used with seasonal data if (i) the seasonal
component is modeled and removed (parametric approach) or (ii) if the
seasonal component is removed non-parametrically (e.g, by differencing).

5 SARIMA models incorporate by construction the ability to handle
seasonal data.
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SARIMA Models

1 SARIMA stands for Seasonal Autoregressive Integrated Moving Average
model or Seasonal ARIMA.

2 Definition of SARIMA model (Box & Jenkins, 1970):

ΦP (Bs)φp(B)∇Ds ∇dXt = c0 + ΘQ(Bs) θq(B) εt

3 c0: Offset (constant term).

4 s: Order (period) of the seasonal component.

5 d: Order of ordinary (short-term) differencing.

6 Ordinary differencing: ∇d = (1−B)d.

7 D: Order of seasonal differencing.

8 Seasonal differencing: ∇Ds = (1−Bs)D.
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SARIMA Models

ΦP (Bs)φp(B)∇Ds ∇dXt = c0 + ΘQ(Bs) θq(B) εt

1 The SARIMA model can be viewed as an ARIMA(p, d, q)× (P,D,Q)s.

2 φp(B) is the ordinary (short-term) autoregressive operator (characteristic
polynomial):

φp(B) = 1− φ1B − φ2B2 − . . .− φpBp.
3 ΦP (Bs) is the seasonal autoregressive operator:

ΦP (B) = 1− Φ1B
s − Φ2B

2s − . . .− ΦPB
Ps.

4 θq(B) is the ordinary moving average operator:

θq(B) = 1 + θ1B + θ2B
2 + . . .+ θqB

q.

5 ΘQ(Bs) is the seasonal moving average operator:

ΘQ(Bs) = 1 + Θ1B
s + Θ2B

2s + . . .+ ΘQB
Qs.
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SARIMA Models

An example of SARIMA model
Consider the model ARIMA(1, 1, 1)× (0, 1, 1)12

The general equation is

ΦP (Bs)φp(B)∇Ds ∇dXt = c0 + ΘQ(Bs) θq(B) εt

Setting s = 12, p = 1, d = 1, q = 1, P = 0, D = 1, Q = 1 we obtain

(1− φB) (1−B12)(1−B)Xt = (1 + ΘB12)(1 + θB)εt.

Expanding both sides of the equation we get[
1− (φ+ 1)B + φB2 −B12 + (φ+ 1)B13 − φB14

]
Xt =

(
1 + θB + ΘB12 + θΘB13

)
εt

or, equivalently

Xt − (φ+ 1)Xt−1 + φXt−2 −Xt−12 + (φ+ 1)Xt−13 − φXt−14

= εt + θεt−1 + Θεt−12 + θΘεt−13 .
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Regarding Non-Stationarity
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Brief Introduction to Non-Stationarity
Some types of Non-Stationarity

Empirical advice: The values of stationary series tend to return to a
long-term mean and the variance is stable (independent of time).

Non-stationarity can arise due to trends, cyclical behavior and random
walks or combinations of the above.

Random walk process: Xt = Xt−1 + εt.

Random walk with drift: Xt = c0 +Xt−1 + εt.

The random walk process has a characteristic polynomial with a unit root.

Note that if Xt is random walk, then the difference Yt = Xt −Xt−1 is
stationary.

The random walk is a discrete version of the continuous-time Wiener
process W (t;ϑ) = W (0;ϑ) + ε(t;ϑ), W (t+ t′;ϑ)−W (t;ϑ) ∼ N (0, σ2t′).

Wiener process properties: E[W (t;ϑ)] = 0, variance Var[W (t;ϑ)] = σ2 t,
and covariance C(t1, t2) = σ2 tmin where tmin = min(t1, t2).

Expectation, Variance and Covariance of the Wiener process
The Wiener process has expectation E[W (t;ϑ)] = 0, variance
Var[W (t;ϑ)] = σ2 t, and covariance C(t1, t2) = σ2 tmin where
tmin = min(t1, t2). Hence, W (t;ϑ) is a non-stationary stochastic process.

Proof
Expectation:

W (t;ϑ) = W (0;ϑ)+[W (t;ϑ)−W (0;ϑ)] =⇒ E[W (t;ϑ)] = 0+E [W (t;ϑ)−W (0;ϑ)] = 0.

Variance: (W (t;ϑ) = W (0;ϑ) + [W (t;ϑ)−W (0;ϑ)] and W (0;ϑ) = 0 )

Var[W (t;ϑ)] = Var [W (t;ϑ)−W (0;ϑ)] = σ2t.

Covariance: (differences using tmin in place of t = 0)

Cov[W (t1;ϑ),W (t2;ϑ)] = E[W (t1;ϑ)W (t2;ϑ)]

=E[{W (tmin;ϑ) +W (t1;ϑ)−W (tmin;ϑ)} {W (tmin;ϑ) +W (t2;ϑ)−W (tmin;ϑ)}]

= (due to independence) E
[
W 2(tmin;ϑ)

]
= Var[W (tmin;ϑ)] = σ2 tmin.
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Stationarity tests

Augmented Dickey-Fuller (ADF) Test
ADF tests for the presence of a unit root in an AR model of the data.

First, the simple Dickey-Fuller test assumes an AR(1) model
Xt = φXt−1 + εt.

This can be written as ∆Xt = (φ− 1)Xt−1 + εt , δXt−1 + εt, (δ = φ− 1).

The null hypothesis is that δ = 0 (i.e., unit root and non-stationarity), while
the alternative is δ < 0.

The test also works for Xt = c0 + c1t+ φXt−1 + εt.

DF tests have low statistical power, i.e., they cannot distinguish between
δ = 0 and δ ≈ 0.

The Augmented Dickey Fuller test uses an AR(p) model of order p
determined from the data.
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Stationarity tests

More on Unit Root tests
The Phillips-Perron is a unit-root test, which, instead of introducing
higher-order lags, provides a non-parametric modification of the
Dickey-Fuller t-test.

The ADF and PP tests are asymptotically equivalent but differ in terms of
small-sample performance.

Unit root tests fail to consistently distinguish between highly persistent
stationary and nonstationary processes.

Tests using models that include a constant term and trend have less
resolving power than tests that include only a constant term.

It is possible to define more efficient tests.
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Stationarity tests

Kwiatkowski–Phillips–Schmidt–Shin (KPSS) Test
The null hypothesis is that the series is stationary around a deterministic
trend (i.e., trend stationary) while the alternative is the presence of a unit
root (non-stationary).

Trend-stationary processes revert to the mean =⇒ shocks have
transient effect.

Unit-root processes (processes with stochastic trends) =⇒ shocks have
permanent effects.

KPSS finds a unit root but ADF does not: the series can be made
stationary by differencing.

ADF finds a unit root but KPSS does not: the series can be viewed as
trend stationary and requires detrending.
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Stationarity tests

Impact of shocks
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Stationarity tests

Heteroskedasticity
Heteroskedasticity: the variance of the time series changes over time.
Statistical analyses based on ordinary least squares (OLS) regression
models often assume homoskedasticity.

Engle’s ARCH test: Null hypothesis→ A series of residuals exhibits no
conditional heteroscedasticity (ARCH effects). Alternative hypothesis→
the series is described by an ARCH(p) model.
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Nonlinear Transforms
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Variance Stabilizing Transforms

Transforms for Heteroskedastic Time Series
Heteroskedastic time series exhibit non-constant variance in time. The
variance depends on the (local) mean value of the process (proportional
effect).

Let us assume that the variance of Yt depends non-linearly on the
expectation: Var[Yt] , h(µt).

We seek a nonlinear transform g(·) such that the time series Xt , g(Yt)
is homoskedastic, i.e., Var[Xt] = σ2.

We can use the delta method which expands functions of a random
variable into Taylor series around the mean.

The second-order Taylor expansion is:

Xt = g(Yt) ≈ g(µt) + g′(µt) (Yt − µt).

Hence the variance of Xt becomes Var[Xt] ≈ (g′(µt))
2 Var[Yt].
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Variance Stabilizing Transforms

Transforms for Heteroskedastic Time Series
Based on the previous slide it holds that Xt , g(Yt),

Var[Yt] = h(µt), Var[Xt] ≈
(
g′(µt)

)2 Var[Yt].

Hence, since Var[Xt] = σ2 we obtain:

h(µt) ≈
Var[Xt]

(g′(µt))
2

=
σ2

(g′(µt))
2

=⇒ g′(µt) =
σ√
h(µt)

=⇒ g(µt) =

∫ µt

0

σ√
h(u)

du .

Special cases of heteroskedasticity correction
Variance Var[Yt] , h(µt) c µ4

t c µ3
t c µ2

t c µt

Stabilizing transform: Xt , g(Yt) Y −1t Y
−1/2
t log Yt Y

1/2
t
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Variance Stabilizing Transforms

Box-Cox Transforms
A nonlinear transform commonly used for time series with positive values is
the so-called Box-Cox transform:

Xt =

{
Y λt −1
λ , λ 6= 0,

lnYt, λ = 0.

}

The transform for λ = 0 is obtained using Taylor series expansion:

Y λt − 1

λ
=

exp (λ lnYt)− 1

λ
=

1 + λ lnYt +O(λ2)− 1

λ
= lnYt +O(λ).

O(λ) denotes the most important term near λ ≈ 0. Based on the above, we
obtain the following:

lim
λ→0

Y λt − 1

λ
= lnYt.
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Variance Stabilizing Transforms

Box-Cox Transforms
The modified Box-Cox transform if Yt also takes non-positive values:

Xt =


(Yt−y0)λ−1

λ , λ 6= 0,

ln (Yt − y0) , λ = 0.

In this case there are two transformation parameters: y0, λ.

In general, y0 < ymin = min (y1, . . . , yN ), so that Yt − y0 > 0.

The parameters λ, y0 are estimated by maximizing the likelihood of the
data.

A new transform method based on deformed logarithmic functions is
well-defined even for y < 0 values. (Kaniadakis Functions beyond Statistical
Mechanics: Weakest-Link Scaling, Power-Law Tails, and Modified Lognormal Distribution.)
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Intermittent processes: Censoring and Nonlinear
Transform

Intermittent Model using Nonlinear Transform of AR(1) process
Let Xt represent an AR(1) process given by

Xt = φXt−1 + εt .

The censored process Xc
t = h(Xt), where h(·) is the unit step function,

satisfies

Xc
t =

{
Xt, forXt > 0,

0, forXt ≤ 0 .

Generate a skewed, intermittent process using a nonlinear, monotonic
transformation G(·):

Yt = G(Xc
t )−G(0)

where G(·) is the inverse Box-Cox transform G(z) = (1 + λz)1/λ, λ ≥ 0, or
the modified exponential transform G(z) =

(√
1 + κ2z2 + κz

)1/κ
, κ ≥ 0.
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Intermittent processes: Censoring and Nonlinear
Transform

Censored AR(1) process
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Intermittent processes: Censoring and Nonlinear
Transform

Intermittent process—transformation of cenored AR(1)
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Parameter Estimation
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Method of Moments (MoM)

What are statistical moments?
Ensemble-based definition:

µpX(t) , E[Xp
t ], p ∈ N σ2

t , E[X2
t ]− E2[Xt] .

Sample based definition (xi , x(ti)):

µ̂pX ,
1

N

N∑
i=1

xpi σ2
X ,

1

N − 1

N∑
i=1

(xi − x)
2
, where x = µX .

Ensemble-based definition (two-point moments):

cX(t, t+ τ) , E[Xt+τ Xt]− E[Xt+τ ]E[Xt], τ ∈ R.

Sample-based definition (two-point moments):

ĉX(τ) ,
1

N − |τ |

N−|τ |∑
i=1

(xi+τ − x) (xi − x) .
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Method of Moments (MoM)

How does the method of moments work?
The ensemble moments depend on the model’s parameters.

The sample moments are fully determined from the data.

MoM is based on equating ensemble and sample moments.

In order for this to work, some form of stationarity and ergodicity are
typically required (especially if only one realization is available).

MoM formulates and solves a moment equation system that comprises
as many equations as there are model parameters.
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Method of Moments (MoM)

Example: AR(1) Model
Let us consider Xt = φXt−1 + εt, where |φ| < 1.

The ACF (ensemble-based) at lag one is given by ρ1 = φ.

Since the AR(1) system only has one parameter, the MoM reduces to

ρ̂1 = ρ1(φ) = φ.

The solution of this system for φ is φ̂ = ρ̂1.

Determining the innovation variance:

σ̂2
ε = s2X

(
1− φ̂2

)
= s2X

(
1− ρ̂21

)
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Method of Moments (MoM)

Example: AR(2) Model
Let us consider Xt = φ1Xt−1 + φ2Xt−2 + εt.

Unknown parameters: φ1, φ2.

The ACF (ensemble-based) at lags one and two is given from the
Yule-Walker equations:

ρ1 = φ1 + φ2ρ2, ρ2 = φ2 + φ1ρ1.

Solving the Yule-Walker system for φ1, φ2 leads to

φ1 =
ρ1(1− ρ2)

1− ρ21
, φ2 =

ρ2 − ρ21
1− ρ21

.

The MoM estimates φ̂1 and φ̂2 are obtained by replacing ρ1, ρ2 in the
above equations with the sample-based estimates ρ̂1, ρ̂2.
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Method of Moments (MoM)

MoM with MA(1)
MA(1) Model: Xt = εt − θεt−1.

Lag-1 ACF: ρ1 = −θ/(1 + θ2).

ρ1θ
2 + θ + ρ1 = 0.

Solution of quadratic MoM equation:

θ̂ =
−1 +

√
1− 4ρ̂21

2ρ̂1
θ̂ =
−1−

√
1− 4ρ̂21

2ρ̂1
.

Problems:
1 Nonlinear moment equation.
2 Two solutions for |ρ̂1| < 0.5, only one =⇒ invertible model.
3 No invertible solution for ρ̂1 = ±0.5.
4 No real-valued solutions for |ρ̂1| > 0.5.
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Method of Moments (MoM)

What about higher-order MA models?
MoM equations for MA(q) models are nonlinear.

Many solutions, only one invertible model.

There are no-real valued solutions of the MoM system if the ACF
estimates take certain values not allowed by the model.

Overall, MoM is not the best method for estimating parameters of MA(q)
models.
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Method of Moments (MoM)

Estimating the Innovation variance

The sample variance s2X = 1
N−1

∑N
t=1(xt − x)2 is estimated from the time

series data.
The innovation variance is linked to the time series variance by means of

σ2
X = σ2

ε g(θ),

where θ is the vector of model parameters and g(·) is a function that
depends on the model.
Hence, in the MoM method the innovation variance is given by

σ̂2
ε =

s2X
g(θ̂)

,

where θ̂ is the estimate of the other (besides the innovation variance)
model parameters (as discussed above).
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Method of Moments (MoM)

Examples: Innovation variance for certain models
AR(p) model

σ̂2
ε = s2X

(
1− φ̂1ρ̂1 − φ̂2ρ̂2 − . . .− φ̂pρ̂p

)
MA(q) models

σ̂2
ε =

s2X
1 + θ̂21 + θ̂22 + . . . θ̂2p

ARMA(1,1) model

σ̂2
ε =

s2X

(
1− φ̂2

)
1− 2φ̂θ̂ + θ̂2

.
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Method of Moments (MoM)

Advantages of MLE
Efficient (low variance estimates).

Often the Gaussian assumption is reasonable.

Even if Xt does not follow the Gaussian distribution, the asymptotic
distribution of the MLE estimates is the same as in the Gaussian case.

Disadvantages of MLE
Difficult optimization problem.

Need to choose a “good” starting point which is often determined by
using other estimators.

Stochastic Processes with Special Reference to Methods and Applications,
M.S. Bartlett
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Ordinary Least Squares (OLS) Estimation

OLS Estimation for AR Models
Assumptions: Stationary time series.

AR(1) model: Xt − µ = φ (Xt−1 − µ) + εt ≡ Xt = φ0 + φXt−1 + εt.

The least-squares method aims to minimize the conditional sum of squares (CSS) with
respect to the parameters φ0, φ:

Sc(φ0, φ) =
N∑
t=2

(xt − φ0 − φxt−1)2

By setting ∂Sc(φ0, φ)/∂φ0 = ∂Sc(φ0, φ)/∂φ = 0 we obtain

φ̂0 =
1

(N − 1)

(
N∑
t=2

xt − φ̂
N∑
t=2

xt−1

)

φ̂ =

∑N
t=2(xt − x)(xt−1 − x∗)∑N

t=2(xt−1 − x∗)2
, x =

1

N − 1

N∑
t=2

xt , x∗ =
1

N − 1

N∑
t=2

xt−1

At the asymptotic limit N →∞ the OLS and MoM estimates are practically the same for
AR(p) models.
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Ordinary Least Squares (OLS) Estimation

OLS estimates for MA(q) and ARMA(p,q) models
The main idea is to minimize the conditional sum of squares (CSS)

S(θ1, . . . , θq | ε0, . . . , ε−q+1) =

N∑
t=1

ε2t | ε0, ε−1, . . . , ε−q+1 .

Initial conditions: Assume ε0 = ε−1 = . . . = ε−q+1 = 0.

Then, based on εt = Xt +
∑q
i=1 θiεt−i, the innovations can be recursively

estimated at every t using the observed time series {x1, . . . , xN}.

The minimization with respect to θ can be carried out numerically.

Similar equations are obtained for ARMA(p,q) models with initial
conditions εp, εp−1, . . . , εp+1−q = 0.

Problem: For short samples the initial conditions may significantly impact
the estimates.

Exercise: Express the CSS for the MA(1) model.
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Maximum likelihood estimation (MLE)

General concepts
The maximum likelihood estimation (MLE) method addresses some of
the pitfalls of MoM and OLS.

The likelihood, L, is a function L (θ;x1, . . . , xN ), where θ is the parameter
vector.

Conditioning information: It represents the available information at time
t: It−1 , {xt−1, xt−2, . . . , x1}.

Two approaches: Conditional MLE and exact MLE.

In conditional MLE we do not consider the initial values (depending on
the order of the model) of the time series (we condition on the past).
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Maximum likelihood estimation (MLE)

Conditional MLE for AR(p) Models
The L (θ;x1, . . . , xN ) is given by joint PDF of the time series:

f(x1, . . . , xN ;θ) =

(
N∏

t=p+1

f(xt | It−1;θ)

)
f(x1, . . . , xp;θ)

∏N
t=p+1 f(xt | It−1;θ): Product rule for joint probability.

f(x1, . . . , xp;θ): Joint PDF at the left-boundary points.

Conditional log-likelihood:

`c(θ;xp+1, . . . , xN ) =

N∑
t=p+1

log f(xt | It−1;θ),

Conditional MLE: θ̂ = arg maxθ

∑N
t=p+1 log f(xt | It−1;θ) .
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Maximum likelihood estimation (MLE)

Conditional MLE for AR(1) Model
The parameter vector is θ = (φ0, φ, σ

2
ε )>.

The AR(1) conditional likelihood is given by

`c(θ; x) =

N∑
t=2

log f(xt | xt−1;θ) = −N − 1

2
log(2π)

− N − 1

2
log(σ2

ε )− 1

2σ2
ε

N∑
t=2

(xt − φxt−1 − φ0)
2

The solution is obtained by ∂`c(θ;x)
∂φ0

= ∂`c(θ;x)
∂σ2

ε
= ∂`c(θ;x)

∂φ = 0.

The above conditions lead to

φ̂0 = φ̂0;OLS , φ̂ = φ̂OLS , σ̂
2
ε =

1

N − 1

N∑
t=2

(
xt − φ̂0 − φ̂xt−1

)2
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Maximum likelihood estimation (MLE)

Exact MLE for AR(1) Model
In order to take into account the information provided by x1 we need to
use the full likelihood `(θ; x) = `c(θ; x) + log f(x1;θ).

The marginal log-likelihood at the boundary point t1 is given by

log f(x1;θ) = −1

2
log(2π)− 1

2
log(σ2

X)− 1

2σ2
X

(x1 − φ0)
2

The variance at the boundary (due to stationarity) is given by
σ2
X = σ2

ε /(1− φ2).

The exact likelihood is given by `(θ; x) = `c(θ; x) + log f(x1;θ).

In general, there are no closed-form solutions for the maximum of the
exact log-likelihood.

Numerical optimization methods are used for exact MLE.
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Forecasting methodologies
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Forecasting methodologies

What constitutes a good forecast?

Forecast: X̂N (k).

Forecast error: εN (k) = XN+k − X̂N (k).

Unbiased forecast: E[εN (k)] = 0.

Efficiency: Minimize Var[εN (k)].

Combine low bias and efficiency in MMSE: Minimize E[ε2N (k)].

A probabilistic forecast involves the optimal prediction, i.e., x̂N (k) and a
measure of uncertainty based on σεN (k).

Prediction interval at confidence level 1− α (e.g., α = 0.05):

[x̂N (k)− zα/2σεN (k), x̂N (k) + zα/2σεN (k)]

where zα/2 = 1.96 for α = 0.05.

(GSLAB) D. Hristopulos: dchristopoulos@tuc.gr Introduction to TSA with R 36/68October 13, 2023 36 / 68

http://www.geostatistics.tuc.gr/4908.html


Forecasting methodologies

Deterministic trend with noise
Model: Xt = µt + εt.
Prediction: x̂N (k) = µN+k.

The trend is known a priori or estimated, e.g. by fitting the data to a
global or a local polynomial model.
Error: εN (k) = εN+k.

Deterministic trend, Seasonal term and noise
Model: Xt = µt + St + εt.
Prediction: x̂N (k) = µN+k + SN+k.
The trend and seasonal terms are either known a priori or estimated by
fitting the data to a deterministic model.
Error: εN (k) = εN+k.
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Forecasting methodologies

Types of Forecasts

Forecasts can be either in-sample
(interpolation) or out-of sample
(extrapolation).

In general, out-of sample
forecasts are a stricter test of
model performance, as the
prediction is compared with data
outside the range used for model
estimation.

In the case of out-of-sample
forecasts we have the option of
multistep-ahead and one-step
ahead prediction.

The prediction uncertainty tends
to increase with the forecasting
horizon.

Forecasting Time Series in R. Jocelyn Barker
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Forecasting methodologies

Commonly used prediction strategies
Multistep ahead prediction: The model is determined based on
{x1, x2, . . . , xN}; predictions are constructed for x̂N (1), x̂N (2), . . . , x̂N (k).

One-step ahead prediction:
1 Estimate the model based on {x1, x2, . . . , xN}
2 Predict each time tN+1, . . . , tN+k using all the data up to the previous time,

i.e., x̂N (1), x̂N+1(1), . . . , x̂N+k−1(1).

Rolling-window forecast: A model is estimated for different window
subsamples; a forecasting horizon h is defined; the model which returns
an optimal prediction performance metric over all subsamples is selected.

Plots from Mathworks (Rolling-Window Analysis of Time-Series Models)
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Forecasting with Stationary models

Conditional Forecasting
The conditional expectation of the time series at time N + k (k ≥ 1) is based
on all the information available up to and including the time tN = Nδt:

x̂N (k)
.
= E[XN+k | IN ], where IN = {XN = xN , XN−1 = xN−1, . . . X1 = x1}.

Forecast of ARMA(p,q) Model

Φ(B)Xt = Θ(B)εt,

xN+k =

p∑
i=1

φixN+k−i + εN+k −
q∑
j=1

θjεt+k−j

x̂N (k) =

p∑
i=1

φix̂N (k − i) + ε̂N (k)−
q∑
j=1

θj ε̂N (k − j)

x̂N (j) =E[XN+j | IN ], j ≥ 1

x̂N (j) =xN+j , j ≤ 0,

ε̂N (j) =0, j ≥ 1,

ε̂N (j) ,εN+j , j ≤ 0

εN+j =xN+j − x̂N+j
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Forecasting with Stationary models

Conditional Forecasting: AR(1) Model

AR(1) model: xt = φxt−1 + εt Innovation: GWN ∼ N (0, σ2
ε )

t→ n+ 1: xn+1 = φxn + εn+1

Prediction: x̂n(1) = φxn

Error: εn(1) = εn+1

Variance: Var[εn(1)] = σ2
ε

t→ n+ 2: xn+2 = φxn+1 + εn+2

Prediction: x̂n(2) = φx̂n(1) = φ2xn

Error:
εn(2) = φεn+1 + εn+2

Variance:
Var[εn(2)] = (φ2 + 1)σ2

ε

t→ n+ k: xn+k = φxn+k−1 + εn+k

Prediction: x̂n(k) = φx̂n(k − 1) = φkxn

Error:
εn(k) =

∑k−1
i=1 φ

k−iεn+i.
Variance:
Var[εn(k)] = 1−φ2k

1−φ2 σ
2
ε
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Forecasting with Stationary models

Conditional Forecasting: AR(p) Model

xt = φ1xt−1 + φ2xt−2 + . . . φpxt−p + εt Innovation: GWN ∼ N (0, σ2
ε )

xn+1 = φ1xn + . . . φpxn−p+1 + εn+1

x̂n(1) = φ1xn + φ2xn−1 + . . .+ φpxn−p+1

Error: εn(1) = εn+1

Variance: Var[εn(1)] = σ2
ε

xn+2 = φ1xn+1 + . . .+ φpxn−p+2 + εn+2

x̂n(2) = φ1x̂n(1) + φ2xn . . .+ φpxn−p+2

εn(2) = φ1εn(1) + εn+2

Var[εn(2)] = (φ21 + 1)σ2
ε

xn+k = φ1xn+k−1 + . . .+ φpxn−p+k + εn+k

x̂n(k) = φ1x̂n(k − 1) + . . .+ φpx̂n(k − p),

where x̂n(j) = xn+j , if j ≤ 0

εn(k) =∑k−1
j=1 φjεn(k − j) + εn+k

Var[εn(k)] =
(
1 +

∑k−1
j=1 φ

2
j

)
σ2
ε
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Forecasting with Stationary models

Conditional Forecasting: MA(1) Model

MA(1) model: xt = εt + θεt−1 Innovation: GWN ∼ N (0, σ2
ε )

t→ n+ 1: xn+1 = εn+1 + θεn

Prediction: x̂n(1) = θεn

Error: εn(1) = εn+1

Variance: Var[εn(1)] = σ2
ε

xn+2 = θεn+1 + εn+2

Prediction: x̂n(2) = 0

Error: εn(2) = xn+2

Variance: Var[εn(2)] = σ2
x

For k > 1: xn+k = θεn+k−1 + εn+k

Prediction: x̂n(k) = 0

The innovation εn can be estimated if |θ| < 1 using
invertibility: εn =

∑∞
j=0 θjxn−j

Error: εn(k) = xn+k

Variance: Var[εn(k)] = σ2
x
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Forecasting with Stationary models

Conditional Forecasting: MA(q) Model

MA(q) model: xt = εt +
∑q
i=1 θiεt−i Innovation: GWN ∼ N (0, σ2

ε )

xn+1 = εn+1 +
∑q
i=1 θqεn+1−i

x̂n(1) = θ1εn + . . .+ θqεn−q+1

εn(1) = εn+1

Var[εn(1)] = σ2
ε

xn+2 =
∑q
i=1 θiεn+2−i + εn+2

x̂n(2) = θ2εn + . . .+ θqεn−q+2

εn(2) = εn+2 + θ1εn+1

Var[εn(2)] = (θ21 + 1)σ2
ε

xn+k =
∑q
i=1 θiεn+k−i + εn+k, k > 1

x̂n(k) =
∑q
i=k θiεn+k−i, for k ≤ q

x̂n(k) = 0, for k > q

εn(k) = εn+k +
∑k−1
i=1 θiεn+k−i

Var[εn(k)] =

σ2
ε

(
1 +

∑k−1
i=1 θ

2
i

)
.
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Forecasting Non-Stationary Time Series

Stationarity-restoring transformation and ARMA
Apply nonlinear transformation X = g(Y ) to the data {y1, . . . , yN} to
restore stationarity in the transformed series {x1, . . . , xN}.
Use ARMA(p,q) or other model to predict {x̂N+1, . . . , x̂N+P }.
Use inverse the transformation, Y = g−1(X), to obtain forecasts
{ŷN+1, . . . , ŷN+P } in the original domain.

Normalizing transformation and ARMA/ARIMA
Apply nonlinear transformation X = g(Y ) to the data {y1, . . . , yN} to
obtain normal distribution of {x1, . . . , xN}.
If {x1, . . . , xN} is stationary, use ARMA(p,q) to predict.
If the transformed series is non-stationary use an ARIMA model.
Invert transformation, Y = g−1(X), to forecast {ŷN+1, . . . , ŷN+P } in
original domain.
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Forecasting Non-Stationary Time Series

Forecasting for ARIMA(p,1,q)
k-step-ahead forecast (k ≥ 1).

First, calculate yt = xt − xt−1, for t = 2, 3, . . ..

Using ARMA(p,q) estimate ŷN (k).

Invert differencing: x̂N (k) = x̂N (k − 1) + ŷN (k), where x̂N (0) = xN .

Hence, forecasting x̂N (k) requires iteratively forecasting
x̂N (1) 7→ x̂N (2) . . . 7→ x̂N (k − 1).

Since x̂N (1) = xN + ŷN (1) =⇒ εX;N (1) = εY ;N (1).

One can then show recursively that εX;N (k) =
∑k
j=1 εY ;N (j).
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Forecasting Non-Stationary Time Series

Nonlinear transformations do not preserve the mean
Caution: The forecasts ŷN+p obtained by inverting a nonlinear
transformation are not necessarily the conditional expectations of the
process Yt.

Monotonic nonlinear transformations preserve quantiles of the marginal
predictive distribution but not the mean.

If X is normally distributed, the conditional mean x̂N+p is equivalent to
the median of the marginal predictive distribution fX(xN+p | IN ).

Then ŷN+p is equivalent to the median of the marginal predictive
distribution fY (yN+p | IN ).

More generally, the principle of quantile invariance holds:
If the transformation g(·) is a monotonically increasing function, it preserves ordering, i.e.,
y1 ≤ y2 ⇔ g(y1) ≤ g(y2). Such transformations also preserve quantiles:
If ŷp is q-th quantile of the marginal distribution Fy(y), then Fx(x̂p), where x̂p = g−1(ŷp)

corresponds to the q-th quantile of the marginal distribution Fx(x).
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Exponentially weighted moving average
EWMA is a simple smoothing and forecasting method that works
reasonably well with minimal assumptions and parameter tuning.

EWMA 1-step-ahead predictive equation (x̂n(1) ≡ x̂n+1):

x̂n(1) =

n−1∑
k=0

wkxn−k, w0 ≥ w1 ≥ w2 ≥ . . . 0,
n−1∑
k=0

wk = 1 .

Weights: wk = α(1− α)k where α < 1 and 1− α is the smoothing factor.

wk = α(1− α)k, k = 0, 1, 2, . . ..

Recursive estimate of non-deterministic mean (smoothing)

µ̂t = αxt + (1− α)µ̂t−1, t = 1, 2, . . .

α ≈ 1: little smoothing (variations attributed to the mean).

α ≈ 0: considerable smoothing (variations attributed to stochastic term).

µ̂t is known as the level.
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Exponentially weighted moving average

Example of smoothing
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Exponentially weighted moving average

EWMA used in Forecasting
Forecast for any time horizon k: x̂n(k) = µ̂n, k = 1, 2, . . ..
One-step-ahead forecast:

x̂n+1 ≡x̂n(1) =

n−1∑
k=0

wkxn−k =

n−1∑
k=0

α(1− α)kxn−k

=αxn + (1− α)

n−2∑
l=0

α(1− α)lxn−1−l = αxn + (1− α)x̂n−1(1)

The next-step forecast based on the augmented dataset
{x1, x2, . . . , xn, xn+1} is:

x̂n+2 ≡ x̂n+1(1) = αxn+1 + (1− α)x̂n(1)

An “optimal α” minimizes the sum of squared 1-step (ahead) prediction
errors SS1PE: SS1PE =

∑n
t=2 ε

2
t ,

∑n
t=2 [xt − x̂t−1(1)]

2
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Exponentially weighted moving average

Example of EWMA One-step-ahead forecasting
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Generalization of EWMA model
Holt-Winters Model
The Holt-Winters model extends EWMA by adding deterministic trend and
seasonality effects:

µt =α(xt − st−T ) + (1− α)(µt−1 + bt−1) (4)

bt =β (µt − µt−1) + (1− β) bt−1 (5)

st =γ (xt − µt) + (1− γ) st−T (6)

µt is the “level” of the process.
µt−1 + bt−1 is the 1-step level forecast at t− 1.
st is the periodic component with period T .
bt is the local slope.
Initialization: µ1 = x1; b1 = 0, s1, . . . , sT = 0 or {si}Ti=1 are set equal to
the mean over the observations for the respective “season”.
Forecast (t→ n): x̂n(k) = µn + kbn + sn+k−T .

“Typical” parameter values: α = β = γ = 0.2.
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Model Assessment
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Model Selection Criteria

Typically, data are fitted to different time series models.

The models are compared in terms of model selection criteria that
quantify the goodness of fit of each model.

N : Number of points in time series; K: number of parameters; L:
likelihood of the model.

Akaike information criterion (AIC):
AIC = 2K − 2 logL ≈ 2K +N log σ̂2

ε .

Bayesian information criterion (BIC):
BIC = K logN − 2 logL ≈ K logN +N log σ̂2

ε .

For ARMA(p,q) models K = p+ q + 1.

Models with lower AIC (BIC) values are preferred to models with higher
AIC (BIC) values.

Cross-validation can also be used for model selection.
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Model Selection Criteria

Preference for Parsimonious Models (Occam’s razor)
The aim is to produce a model that is parsimonious, i.e., it has as few
parameters as possible (principle of parsimony-Occam’s razor), while it
also passes the diagnostic checks.

A parsimonious model is desirable because (i) it is more interpretable
and (ii) including irrelevant lags in the model increases the coefficients’
standard errors.

High-order models that incorporate too many lags tend to forecast poorly,
because they fit the data too closely adapting to random (non-systematic)
features in the data (compare to overfitting in linear regression problem).

Combining weighted forecasts (e.g., ARIMA with EWMA) can improve
accuracy.

(GSLAB) D. Hristopulos: dchristopoulos@tuc.gr Introduction to TSA with R 42/68October 13, 2023 42 / 68

http://www.geostatistics.tuc.gr/4908.html


Cross-validation Analysis

Types of Cross-Validation
In cross-validation (CV) we use part of the N data points to train the model
and the remaining data to test performance. Different CV approaches include:

k-fold CV: partitioning the dataset in k
folds of which k − 1 are used for training;
repeated k times.
Leave-p-out CV: all ways of splitting the
dataset into a training set of N − p points
and a validation set with p points.
Leave-one-out CV: leave-p-out CV with
p = 1.
Holdout CV: random splitting of dataset
into training and validation sets.
Rolling CV - Time series CV: see figure
(from Rob J. Hyndman’s website).

Rolling-forecast
cross-validation:
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Cross-validation Analysis

Mean Squared Error (MSE)
Let us assume that the time series is divided into two parts:

The training set includes the first N time series values {x1, . . . , xN}

The validation set includes the remaining M values {xN+1, . . . , xN+M}

The mean square error (MSE) is then defined as

MSE =
1

M

M∑
k=1

[xN+k − x̂N (k)]
2

Other assessment measures are also used, e.g., RMSE = sqrt(MSE),
mean error (ME), mean absolute error (MAE), coefficient of determination
R2.
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Cross-validation Analysis

Tests of Forecast Accuracy
Tests of forecast accuracy are based on the difference between the
forecast of the variables value at time t and the actual value at time t
(forecast error)

Statistical forecast measures include:
1 Mean Absolute Error

2 Mean Average Prediction Error

3 Chow’s test for predictive failure (structural break in the time series)

4 Correlation (linear, Spearman) between true values and forecasts

5 Root Mean Square Error (the square root of the MSE)

6 Percentage of interval coverage (what percent of validation data fall inside
the prediction intervals)
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Residuals Diagnostics

Are the residuals consistent with the model assumptions?
Are the residuals zero-mean (unbiased forecast)?

Are the residuals normally distributed?

Are they uncorrelated?

Are they stationary (homoskedastic)?

What do do next?
If the residuals satisfy the desired properties, then the model is consistent
with the data.

If the residuals fail one or more of the above properties, then a more
suitable model may be necessary for the dataset.
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Spectral Analysis
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Regarding Spectral Density Estimation

Estimation methods
1 Non-parametric methods are data-driven; they estimate the PSD directly

from the time series without making assumptions.

2 Parametric methods assume that the time series can be represented as
the response of a linear system to an innovation process. They can be
more efficient than non-parametric methods if the time series is short.

3 Subspace methods, also known as high-resolution methods estimate the
spectral content by diagonalizing the auto-correlation matrix.
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Regarding Spectral Density Estimation
Synopsis of different spectral methods

Method Features
Periodogram Raw PSD estimation

Welch (modified peri-
odogram)

Average periodogram calculated over overlap-
ping segments

Multitaper methods Estimates combine multiple estimation win-
dows (tapers)

Autoregressive Use of AR model

Burg AR model based on mininization of forward lin-
ear forecasting errors

Modified autocovari-
ance

Regression model based on mininization of for-
ward/backward forecasting errors

Multiple Signal Classifi-
cation (Music)

Pseudo-spectrum estimation based on eigen-
vectors of auto-correlation matrix

Eigenvector Pseudo-spectrum estimation based on
weighted version of Music.
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The periodogram estimator
1 Estimate the discrete Fourier transform of the time series

X̃n =

N−1∑
t=0

Xt e
− 2π n t/N , n = 0, . . . , N − 1.

2 The discrete frequencies used are

fn =
2fc n

N
=
fs n

N
, n = 0, 1, . . . ,

N

2
− 1

3 fs = 1/δt: sampling frequency; fc = fs/2: Nyquist (critical) frequency.
4 For real-valued time series, the one-sided periodogram is used

P̂X(f0) =
1

N2
‖X̃0‖2 , P̂X(fc) , P̂X(fN/2) =

1

N2
‖X̃N/2‖2 .

P̂X(fn) =
1

N2

[
‖X̃n‖2 + ‖X̃N−n‖2

]
, n = 1, 2, . . . , N/2− 1 .
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The periodogram estimator
Properties of the Periodogram

Spectral leakage: Mixing of frequencies due to finite observation window.

Xobs(t) = X(t) ΠN (t), where ΠN (t) = 1 if t = 0, δt, . . . , (N − 1) δt and
ΠN (t) = 0 for all other t is the window function.

Hence, X̃obs(f) = X̃(f) ∗ Π̃N (f)

FT of the window function:

Π̃N (f) =

N−1∑
k=0

e2πfnkδt = eπfn(N−1)δt
[

sin(πNfnδt)

sin(πfnδt)

]
, fn =

n

N δt

Hence,
P̂X(f) = ‖X̃obs(f)‖2 = ‖X̃(f) ∗ Π̃N (f)‖2

Consequently, P̂X(f) = ‖X̃(f)‖2 only if Π̃N (f) = δ(f − f ′).
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The periodogram estimator

Periodogram of the superposition of two sine functions with frequencies 140 Hz
and 150 Hz contaminated with white noise exhibiting spectral leakage.
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The periodogram estimator
Other properties of the periodogram

Resolution: It determines the ability to distinguish between neighboring
frequencies.

Two frequencies can be resolved if ∆f ≥ fres = fs
N .

Bias: The periodogram is biased due to spectral leakage.

Asymptotic lack of bias: However, at the limit limN→∞ Π̃N (f) = δ(f − f ′)
and the periodogram is asymptotically unbiased.

Precision: The variance of the periodogram is proportional to the square
of the expected spectral density and independent of N .

However, this is not a problem for time series with a strong deterministic
periodic component.
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The periodogram estimator
Regarding the use of windows

The raw periodogram estimator suffers from: spectral leakage and low
precision.
Precision can be improved by segmenting the time series in different
windows, estimating the periodogram in each window, and then
averaging over all windows.
The spectral leakage is caused by the finite observation time.

physics-for-understanding-fmri

Spectral leakage is
reduced by using spectrum
analysis windows.
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The periodogram estimator
Method of Welch (Modified periodogram)

The main idea: Introduce leakage (in terms of weights) in the time
domain to reduce spectral leakage.
Modified Fourier transform

X̆n =

N−1∑
k=0

Xk wk e
−i 2π k n/N , k = 0, . . . , N − 1

Modified periodogram estimator

P̂X(f0) =
1

Wss
‖X̆0‖2 , P̂X(fc) ≡ P̂X(fN/2) =

1

Wss
‖ X̆N/2 ‖2

P̂X(fn) =
1

Wss

[
‖X̆n‖2 + ‖X̆N−n‖2

]
n = 1, 2, . . . , N/2− 1,

Normalization factor: Wss = N
N−1∑
n=0

w2
n .
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The periodogram estimator
Spectral windows

Spectral form for a general window function {wk}N−1k=0 :

WT (fn) =
1

Wss

∥∥ N−1∑
k=0

e2πfnkδt wk
∥∥2 ,

Welch window:

wk = 1−
(
k −N/2
N/2

)2

.

Different window models are available, and they have different properties
concerning the reduction of spectral leakage.
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The periodogram estimator
Window Viewer
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The periodogram estimator
Improving precision

The periodogram estimator has high variance.

This can be reduced by segmenting a time series of length N = 2KM
into K segments of length 2M each.

The periodogram is evaluated separately for each of the K segments.

An average is evaluated over theK periodograms.

This reduced the variance by 1/K.
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The periodogram estimator
Hamming Window in Time and Frequency Domains
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The periodogram estimator
Impact of Windowing on Spectral Density Estimation
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Spectral Analysis

Estimation of Power Spectral Density: Sunspot numbers
sspf = ssp - mean(ssp); % Centering
cl = 0.95; % Confidence level
fs = 1; % Sampling frequency
Nfft = 256; % No. FFT points

5 % Define window function
window = hamming(length(ssp));
% Estimate periodogram
[pxx,f,pxxc]=periodogram(sspf,window,
... Nfft,fs,’ConfidenceLevel’, cl);

10 pxxdb = 10*log10(pxx);
pxxcdb = 10*log10(pxxc);
plot(f,pxxdb,’b-’,’LineWidth’,2);
hold on;
plot(f,pxxcdb,’r-.’);

15 axis tight; xlabel(’Hz’)
ylabel(’Power (dB)’);
title(’Sunspot number’);
grid on; set(gca,’FontSize’,14);

Why do we remove the
mean value of the
measurements?

Why do we use the
Hamming window;
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Spectral Analysis

Estimation of power spectral density

% Find dominant peak
[pks, flocs]=findpeaks(pxxdb,f

,...
’SortStr’,’descend’);

plot(flocs(1), pks(1), ’mo’,
...

5 ’MarkerFaceColor’, ’g’, ...
’MarkerSize’, 8);

% Dominant period
period=round(1/flocs(1));

10 labt=[num2str(period) ’ Years’
];

gtext(labt, ’FontSize’, 14 );
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Some Practical Examples of Time-Series Analysis
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Some Practical Examples of Time-Series Analysis

Fitting a Polynomial Trend Model to Time series Data

tt <- as.numeric(time(co2))
fit <-lm(co2˜poly(tt,degree

=1,raw=TRUE))
fit2 <-lm(co2˜poly(tt,degree

=2,raw=TRUE))
plot(co2)

5 lines(tt,predict(fit),col=’
red’)

lines(tt,predict(fit2),col=’
blue’)
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Some Practical Examples of Time-Series Analysis

Removing the Trend from Time series Data

trend2 <- predict(fit2)
fit4 <- lm(co2˜poly(tt,

degree=4,raw=TRUE))
trend4 <- predict(fit4)
co2fluc1 = co2-trend

5 co2fluc2 = co2-trend2
co2fluc4 = co2-trend4
plot(co2fluc)
lines(co2fluc2,col=’green’)
lines(co2fluc4,col=’red’)

Residuals based on 3 polynomial
trend models
Linear fit, –second degree, –fourth
degree
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Some Practical Examples of Time-Series Analysis

Testing the Residuals for Correlations

acf(ts(co2fluc4,freq=1),lag.max=40,main="Autocorrelation
Function for CO2 Data after Removing 4th-order Polynomial",
ylim=c(-1,1))
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Some Practical Examples of Time-Series Analysis

Constructing a Model for the Periodic Component

s1<-sin(tt*2*pi/1)
s2<-cos(tt*2*pi/1)
fit.periodic <- lm(co2fluc4˜s1+s2)
summary(fit.periodic)

The smaller the p-value
for a variable, the more
significant the specific
variable is for the
model.

The p-value is the
probability of obtaining
the observed statistic
(here, t-value) if the
null hypothesis (i.e.,
constant value) holds.
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Some Practical Examples of Time-Series Analysis

Testing for Correlations after Removing the Periodic Component

periodic <- predict(fit.periodic)
des_fluc = co2fluc4 - periodic
acf(ts(des_fluc,freq=1),lag.max=40,main="ACF for CO2 Data after

Removing 4th-order Polynomial and Periodic Component",ylim=
c(-1,1))

There are remaining periodic correlations but their magnitude is reduced.
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Some Practical Examples of Time-Series Analysis

Testing the Model so Far (Trend and Periodic Component)

co2e <- periodic + trend4
plot(tt,co2)
lines(tt,co2e,col=’red’)
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Some Practical Examples of Time-Series Analysis

Estimate the trend and periodic models simultaneously

s1<-sin(tt*2*pi/1)
s2<-cos(tt*2*pi/1)
fit.complete <- lm(formula = co2˜poly(tt,degree=2,raw=TRUE) +

s1 + s2)
summary(fit.complete)
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Some Practical Examples of Time-Series Analysis

Plot the trend+periodic model versus the original data

pred.complete <-predict(fit.
complete)

plot(co2)
lines(tt,pred.complete, col=’blue’)

The R-squared (coefficient of
determination) is the percent of total
variance in the data explained by the
model:

R2 = 1−
RSS

TSS

RSS =
n∑
t=1

(xt − x̂t)2 ,

TSS =

n∑
i=t

(xt − x)2

The adjusted R-squared is a modified
version of R-squared which accounts
for insignificant predictors in
regression models.
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Fitting and Predicting with SARIMA Models

Airline Passengers data
R dataset AirPassengers contains the monthly airline passengers from
1949 t0 1960 (From Shumway & Stoffer, 2017).
The time series analysis will be carried out with the ATSA R package.
The package is installed using install.packages("astsa")

library(astsa)
x = AirPassengers
lx = log(x)
dlx = diff(lx)

5 ddlx = diff(dlx, 12)
plot.ts(cbind(x,lx,dlx

,ddlx), main="")

We compute (i) the logarithm (ii) differences of the logarithms and (iii)
seasonal differences of order 12 (to remove periodicity).
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Fitting and Predicting with SARIMA Models

Testing the Time Series for Correlations

acf2(ddlx) # Calculate the ACF and PACF of the seasonal
differences
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Fitting and Predicting with SARIMA Models

Estimating a SARIMA Model
The ACF and PACF plots indicate (p, d, q) = (1, 1, 1) and (P,D,Q) = (0, 1, 1).

sarima(lx,1,1,1,0,1,1,12) # Model A
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Fitting and Predicting with SARIMA Models

Testing residuals for correlations
Ljung-Box (Portmanteau) test

Null hypothesis H0 : ρτ = 0, τ = 1, . . . , k. In portmanteau statistical tests
only the null hypothesis is well-defined.
Sampling function used for L-B test:

Q = N(N + 2)

k∑
τ=1

ρ̂2τ
N − τ

Q follows the X 2
k distribution with k degrees of

freedom, i.e., Q ∼ X 2
k .

Rejection zone of H0 for significance level α: Q > χ2
k;1−α. χ2

k;1−α is the
critical value of the distribution X 2

k that corresponds to the 1− α quantile :
P (X 2

k ≤ χ2
k;1−α) = 1− α.

Practical rule-of-thumb:
1 For time series without seasonality it is recommended k = min(10, N/5).
2 For periodic time series with period T it is recommended that
k = min(2T,N/5).
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Fitting and Predicting with SARIMA Models

sarima(lx,1,1,1,0,1,1,12) # Model A

Statistics for Model A: (p, d, q) = (1, 1, 1), (P,D,Q) = (0, 1, 1)12

Estimate SE t.value p.value
ar1 0.1960 0.2475 0.7921 0.4298
ma1 −0.5784 0.2132 −2.7127 0.0076

sma1 −0.5643 0.0747 −7.5544 0.0000

Table: The AR1 term is not statistically significant (high p-value).

Selection criteria for Model A: (p, d, q) = (1, 1, 1),
(P,D,Q) = (0, 1, 1)12

AIC = −3.678622
AICc = −3.677179
BIC = −3.59083
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Fitting and Predicting with SARIMA Models

SARIMA Model B: (p, d, q) = (1, 1, 0), (P,D,Q) = (0, 1, 1)12

sarima(lx,1,1,0,0,1,1,12) # Model B
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Fitting and Predicting with SARIMA Models

sarima(lx,1,1,0,0,1,1,12) # Model B

Statistics for Model B: (p, d, q) = (1, 1, 0), (P,D,Q) = (0, 1, 1)12

Estimate SE t.value p.value
ar1 −0.3395 0.0822 −4.129 1e-04
sma1 −0.5619 0.0748 −7.5109 0.0000

Table: The AR1 term is statistically significant.

Selection criteria for Model B: (p, d, q) = (1, 1, 0),
(P,D,Q) = (0, 1, 1)12

AIC = −3.675493

AICc = −3.674777

BIC = −3.609649 lower than Model A: (p, d, q) = (1, 1, 1), (P,D,Q) = (0, 1, 1)12
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Fitting and Predicting with SARIMA Models

Diagnostic Checks of SARIMA Residuals for Model B

The residuals show practically no correlations.

The normal assumption seems reasonable (potential outliers).

The Ljung-Box p-values support the null hypothesis (no correlations).

(GSLAB) D. Hristopulos: dchristopoulos@tuc.gr Introduction to TSA with R 52/68October 13, 2023 52 / 68

http://www.geostatistics.tuc.gr/4908.html


Fitting and Predicting with SARIMA Models

SARIMA Prediction for Model A: (1, 1, 1)× (0, 1, 1)12

lxp1 = sarima.for(lx, 12, 1,1,1, 0,1,1, 12) # Model A
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Fitting and Predicting with SARIMA Models

SARIMA Prediction Model A: (1, 1, 0)× (0, 1, 1)12

lxp2 = sarima.for(lx, 12, 1,1,0, 0,1,1, 12) # Model B
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Fitting and Predicting with SARIMA Models

Comparing SARIMA Predictions of Logarithmic Air Passenger
Numbers

library(xtable)
lxp1$se
s<-lxp1$se
tab<-xtable(s, caption= "Standard Prediction Errors")

5 print(tab,file="tab1.tex",caption.placement="bottom", hline.
after=seq(from=-1,to=nrow(tab),by=1))

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
0.0366 0.0430 0.0474 0.0512 0.0547 0.0580 0.0611 0.0640 0.0668 0.0695 0.0721 0.0746
0.0369 0.0444 0.0528 0.0594 0.0656 0.0711 0.0763 0.0811 0.0857 0.0900 0.0941 0.0981

Table: Standard Prediction Errors for 12 months in 1961. Row 1: (p, d, q) = (1, 1, 1),
(P,D,Q) = (0, 1, 1)12. Row 2: (p, d, q) = (1, 1, 0), (P,D,Q) = (0, 1, 1)12.

Selection Criteria prefer Model B.
Model A (higher complexity) has smaller standard errors than Model B. Is this good or bad?
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Nonlinear time series models
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Threshold Auto-regressive (TAR) models

In threshold auto-regressive (TAR) models the process transitions
between regimes with different values of AR parameters based on certain
threshold(s).

In self-exciting TAR (SETAR) models, the regime for xt is determined by
the value of the time series in the past, xt−d, where d > 0 is the delay
parameter.

System of equations for K regimes:

xt =
∑p
i=1 φ

(k)
i xt−i + σ

(k)
ε εt, if xt−d ∈ Rk

Rk = ( rk−1, rk) where −∞ , r0 < r1 < r2 < . . . < rK ,∞
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Threshold Auto-regressive (TAR) models

Example of SETAR Model
xt = 3 + 0.9xt−1 + εt if xt−1 ≤ 0, xt = −2− 0.5xt−1 + 0.5 εt if xt−1 > 0
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Threshold Auto-regressive (TAR) models

Other TAR Models
It is possible to switch regimes for xt based on the values of an
exogenous variable zt (exogenous TAR models).

Aleatory (random) or periodic regime switching are also possible.

Transitions in TAR models are abrupt.

Smooth-transition auto-regressive models (STAR) involve variable-rate
state transitions.
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Markov Switching Model for Time Series

Markov or probabilistic regime switching
The model contains regimes that can represent very different behavior.

Change in behavior represents structural changes in the time series.

Regime switching allows capturing dynamic patterns.

Markov property: The transition probability to any particular state
(regime) depends only on the current state, not any of the past states.

In structural models (cf. Chow’s test) there is usually one regime change.
In Markov switching, multiple changes are likely.
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Markov Switching Model for Time Series

Two-state Markov Switching AR Model (Matlab)
Assume two regimes, denoted by st = 0 and st = 1.

The two-state Markov switching model is then determined by

xt =

p0∑
i=1

φ
(0)
i xt−i + σ(0)

ε εt, if st = 0, AR(p0) model

xt =

p1∑
i=1

φ
(1)
i xt−i + σ(1)

ε εt, if st = 1, AR(p1) model

Markov chain transition model, pi,j = Prob(st = i | st−1 = j):

P =

[
p0,0 p0,1
p1,0 p1,1

]
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Example of Markov Switching Model
P = [0.9 0.1; 0.3 0.7];
mc=dtmc(P,’StateNames’, ...
["Expansion" "Recession"]);
mdl1=arima(’Constant’,5, ...

5 ’AR’,[0.3 0.2],’Variance’,2);
mdl2=arima(’Constant’,-5, ...
’AR’,0.1, ’Variance’,1);

mdl=[mdl1; mdl2];
Mdl=msVAR(mc,mdl);

10 [y,e,sp] = simulate(Mdl,50);
figure
subplot(3,1,1); plot(y)
ylabel(’Response’);
grid on

15 subplot(3,1,2); plot(e)
ylabel(’Innovation’)
grid on
subplot(3,1,3); plot(sp,’m’)
ylabel(’State’); yticks([1 2])

20 yticklabels(Mdl.StateNames)
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Auto-regressive conditional heteroskedasticity (ARCH)

ARCH Models
The ARCH model involves multiplicative noise with variance given by an
AR(p) model

xt = σt εt, where σ2
t = φ0 + φ1x

2
t−1 + . . . φpx

2
t−p, σt : volatility ,

εt ∼ N(0, 1): standard Gaussian white noise (GWN)

Constraints: φ0 > 0, φi ≥ 0, i = 1, . . . , p

Generalized ARCH (GARCH) Models
In the generalized ARCH model the volatility has double AR dependence:

xt = σt εt, where σ2
t = φ0 +

p∑
i=1

φi x
2
t−i +

q∑
j=1

ψj σ
2
t−j

Constraints: φ0 > 0, φi ≥ 0, i = 1, . . . , p , ψj ≥ 0, j = 1, . . . , q
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Auto-regressive conditional heteroskedasticity (ARCH)

ARCH(1) Model
ARCH(1) Equation

Xt =
√
φ0 + φ1X2

t−1 εt

Conditional mean (on It−1, information at time t− 1):

E [Xt | It−1] = E[εt]
√
φ0 + φ1x2t−1 = 0 .

Unconditional mean

E [Xt] = E[εt]E
[√

φ0 + φ1X2
t−1

]
= 0 ,

Conditional variance

Var[Xt | It−1] = E
[
X2
t | It−1

]
− E2 [Xt | It−1] = E[ε2t ]

(
φ0 + φ1x

2
t−1
)
− 0

= φ0 + φ1x
2
t−1
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Auto-regressive conditional heteroskedasticity (ARCH)

Variance of ARCH(1) Model
The conditional variance depends on time. However, this does not mean
that the ARCH model is non-stationary.
Unconditional variance (using the law of total variance)

Var[Xt] = E[Var[Xt | It−1]] + Var [E (Xt | It−1)]

= E
[
φ0 + φ1X

2
t−1
]

+ Var(0)

= φ0 + φ1E[X2
t−1] = φ0 + φ1Var[Xt−1]

Assuming stationarity Var[Xt] = Var[Xt−1] and thus

Var[Xt] =
φ0

1− φ1
.

Hence, stationarity is possible only if φ1 < 1.

(GSLAB) D. Hristopulos: dchristopoulos@tuc.gr Introduction to TSA with R 57/68October 13, 2023 57 / 68

http://www.geostatistics.tuc.gr/4908.html


Auto-regressive conditional heteroskedasticity (ARCH)

The ARCH(1) process is leptokurtic
Leptokurtic means thinner core, fatter tails than the Gaussian
Let Kurt(Xt) represent the kurtosis of Xt

Kurt(Xt) ,
E[X4

t ]

Var2[Xt]

The fourth-order moment is obtained using the law of total expectation as

E[X4
t ] =E

[
E
(
X4
t | It−1

)]
= E

[(
φ0 + φ1X

2
t−1
)2] E[ε4t ]

=3
(
φ20 + 2φ0φ1 E[X2

t−1] + φ21 E[X4
t−1]

)
=3
(
φ20 + 2φ0φ1 Var[Xt] + φ21 E[X4

t ]
)

⇒E[X4
t ] = 3

φ20
1− φ1

1 + φ1
1− 3φ21

. Also use Var[Xt] =
φ0

1− φ1

Hence, it follows that Kurt(Xt) = 3
1−φ2

1

1−3φ2
1
> 3 .
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Auto-regressive conditional heteroskedasticity (ARCH)

Simulation of GARCH(1,1) model
σ2
t = 0.01 + 0.25x2t−i + 0.7σ2

t−j

% Step 1. Specify a GARCH model
Mdl = garch(’Constant’,0.01,’GARCH’,0.7,’ARCH’,0.25)

% Step 2. Simulate from the model without using presample data
5 rng default; % For reproducibility

[Vn,Yn] = simulate(Mdl,100,’NumPaths’,5);
Vn(1,:) % Display variances
figure
subplot(2,1,1)

10 plot(Vn)
xlim([0,100])
title(’Conditional Variances’)
subplot(2,1,2)
plot(Yn)

15 xlim([0,100])
title(’Innovations’)
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Auto-regressive conditional heteroskedasticity (ARCH)

Simulation of GARCH(1,1) model
σ2
t = 0.01 + 0.25x2t−i + 0.7σ2

t−j

%Step 3. Simulate from the model using presample data.

[Vw,Yw] = simulate(Mdl,100,’NumPaths’,5, ’E0’,0.05,’V0’,0.001);
Vw(1,:)

5

figure
subplot(2,1,1)
plot(Vw)
xlim([0,100])

10 title(’Conditional Variances’)

subplot(2,1,2)
plot(Yw)
xlim([0,100])

15 title(’Innovations’)
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Auto-regressive conditional heteroskedasticity (ARCH)

Simulation of GARCH(1,1) model
σ2
t = 0.01 + 0.25x2t−i + 0.7σ2

t−j

%Step 4. Look at the unconditional variances.

sig2 = 0.01/(1-0.7-0.25);

5 rng default;
[V,Y] = simulate(Mdl,500,’NumPaths’,10000);

figure
plot(var(Y,0,2),’Color’,[.7,.7,.7],’LineWidth’,1.5)

10 xlim([0,500])
hold on
plot(1:500,ones(500,1)*sig2,’k--’,’LineWidth’,2)
legend(’Simulated’,’Theoretical’,’Location’,’NorthWest’)
title(’Unconditional Variance’)

15 hold off
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Auto-regressive conditional heteroskedasticity (ARCH)

The ARCH(1) process is uncorrelated
We use the Law of Iterated Expectation (LIE):

E[XtXt−1] =E
It−1

[E [XtXt−1 | It−1]]

=E
It−1

[Xt−1E [Xt | It−1]] = E [Xt · 0] = 0.

Similarly, we can show that E[XtXt−n] = 0 for n ≥ 1.

Since E[Xt] = 0, Var[Xt] = φ0/(1− φ1), E[XtXt−n] = 0 for n ≥ 1, the
process Xt is stationary if 0 < φ1 < 1.

Similarly, ARCH(p) processes are stationary if
∑p
i=1 φi < 1.
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Auto-regressive conditional heteroskedasticity (ARCH)

ARCH(1) and Efficient Market Hypothesis
Hence, Xt cannot be predicted based on the past.

This property resonates with the efficient market hypothesis (EMH).

EMH: Market operation is efficient, meaning it is not possible to make
excess profits by investing since stocks are fairly and accurately priced at
any time.

EMH is controversial. Some investors (e.g., Warren Buffett) consistently
outperform the markets.
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Auto-regressive conditional heteroskedasticity (ARCH)

Nonetheless, X2
t can be predicted!

Note that E[X2
t ] = Var[Xt].

The conditional (on the past) variance of X2
t is:

Var[Xt | It−1] = φ0 + φ1x
2
t−1.

The R script arch wmt applies GARCH modeling to Walmart stock prices.
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Auto-regressive conditional heteroskedasticity (ARCH)
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Auto-regressive conditional heteroskedasticity (ARCH)

ARMA models are used to model conditional mean.

ARCH models are used to represent conditional variance.

ARCH models capture volatility clustering: i.e., periods of large (or small)
values of volatility tend to be followed by periods of similar values.
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A Summary of Time Series Analysis
1 Exploratory data analysis

Are there correlations in the data?
White noise

2 Model determination
correlations or signal + noise
identify p, d, q and seasonal components
Nonlinear dependence? SETAR, ARCH/GARCH ?
Estimating parameters of the signal and for residuals

3 Model checks
Testing of residuals
Examining realizations and their characteristics
Obtain forecasts, spectral estimates, use cross-validation

4 General remarks
Nonlinear models are more flexible but identification is difficult and
over-fitting is possible.
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Multivariate time series
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Two-point Correlation Functions
The cross-covariance functions of two scalar processes Xi(t) and Xj(t)
are defined by the expectation (for i, j = 1, . . . , D)

Ci,j(t, t+ τ) , Cov{Xi(t+ τ), Xj(t)} = E[X ′i(t+ τ)X ′j(t)],

where τ is the temporal lag.

For i = j the auto-covariance functions are obtained.

The processes Xi(t) and Xj(t) are jointly stationary (in the weak sense)
if (i) they are both stationary and (ii) the cross-covariance function Ci,j(·)
is purely a function of τ .

The cross-correlation functions (CCF) are given by

ρi,j(τ) =
Ci,j(τ)

σiσj
,

where σ2
i = Ci,i(0) = VarXi(t) is the variance of the i-th component.

The auto-correlation functions are defined by ρi,i(τ) =
Ci,i(τ)

σ2
i

.

(GSLAB) D. Hristopulos: dchristopoulos@tuc.gr Introduction to TSA with R 60/68October 13, 2023 60 / 68

http://www.geostatistics.tuc.gr/4908.html


Two-point Correlation Functions
Sample cross-covariance:

Ĉi,j(k) =
1

N − k

N∑
n=k+1

xi,n−k xj,n − xi xj , for k ∈ {0,±1,±2, . . .}

Sample cross-correlations:

ρ̂i,j(k) ,
Ĉi,j(k)√

Ĉi,i(0) Ĉj,j(0)

Symmetry property:
Ci,j(τ) = Cj,i(−τ)

Contrast with the ACF:
Ci,i(τ) = Ci,i(−τ)
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Two-point Correlation Functions

Review of Bochner’s theorem for scalar process
A function C(τ) : R → R is nonnegative definite if the following conditions
hold:

1 The Fourier transform C̃(ω) , FT[C(τ)] exists.

2 C̃(ω) ≥ 0, for all ω ∈ R.

3 The spectral integral 1
2π

∫
R dω C̃(ω) is a finite number which represents

the variance of the stochastic process.
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Two-point Correlation Functions

Cramer’s Theorem for multivariate processes
C(τ) : R → RD × RD is a valid matrix covariance function for a continuous,
stationary, stochastic vector process, if the following conditions hold:

1 The FTs C̃i,j(ω) exist for all i, j = 1, . . . , D.

2 Non-negative auto-spectral densities: C̃i,i(ω) ≥ 0 for all i = 1, . . . , D.
3 The integrals of the auto-spectral densities are finite:∫

R

dω

2π
C̃i,i(ω) = σ2

i , i = 1, . . . , D.

4 The cross-spectral densities have bounded variation, i.e., for all
i 6= j = 1, . . . , D

∫
R dω

∣∣∣C̃i,j(ω)
∣∣∣ are finite.

5 The spectral density matrix C̃(ω), [C̃(ω)]i,j = C̃i,j(ω), is nonnegative
definite for all ω ∈ R.
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Two-point Correlation Functions

A Simple example of CCF

Simple system with time-delayed
interaction

Yt = AXt−` + εt

X leads Y if ` > 0 and X lags Y
if ` < 0, respectively.

CY,X(τ) = Cov(Yt+τ , Xt) =
Cov(AXt+τ−` + εt+τ , Xt) =
ACov(Xt+τ−`, Xt) =
ACX(τ − `).

Simulated system (ccf.R)

x = rnorm(500)
y = lag(x, -5) + rnorm(500)
ccf(y, x, ylab=’CCovF’, type=’

covariance’)
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Two-point Correlation Functions

What is the distribution of the sample cross-correlation?

Theorem
Large-Sample Probability Distribution of Cross-Correlation:
Let us consider the time series Xt and Yt. If N →∞, and at least one of the
series Xt, Yt is independent white noise, then

ρ̂X,Y (τ) ∼ N
(

0,
1√
N

)
Nice result, but usually none of the series is i.i.d. See Cross-correlation.R

If both processes have auto-correlations, the variance of ρ̂X,Y (τ) involves
an annoying infinite series of ACF products.

Solution: Prewhitening. See CCF synthetic.R
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Two-point Correlation Functions

Permutation Method for CCF testing
Null hypothesis: The series Xt and Yt are not correlated.
What is the probability that the sample cross-correlation, ρ̂X,Y (τ) is
realized if the null hypothesis is true?

Generate Ms randomized states X(m)
t , where m = 1, . . . ,Ms.

These states are obtained from Ms random permutations of N values of
Xt (or Yt).
Permutations destroy the temporal ordering.
Hence, the estimated sample cross-correlation ρ̂X(m),Y (τ) based on the
shuffled time series Xm(t) represents random fluctuations.
The p-value for cross-correlation testing at lag τ is the percentage of the
Ms permutation states for |ρ̂X(m),Y (τ)| > |ρ̂X,Y (τ)|.
The observed cross-correlation, ρ̂X,Y (τ) is statistically significant if the
p-value is less than the specified significance level (typically 0.1%–5%).
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Two-point Correlation Functions

Example of permutation testing
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Transfer function (TF) models

Model properties
Transfer function models allow describing the interaction (dependence)
between time series

They involve two main assumptions.

First, the input (source) series influences the output (receiver) series but
there is no feedback in the opposite direction.

Second, the interaction between input and output involves only previous
(past) times of the input series.

Furthermore, it is assumed that both the input and response series are
stationary.
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Transfer function (TF) models

Model equations
Assume that Xt is the input and Yt is the output.

TF model: Yt − µY =
∑∞
j=0 wj (Xt−j − µX) + Zt.∑∞

j=0|wj | <∞.

Zt is assumed to be a zero-mean residual (error term).

In practice, the interaction is cut off after some maximum lag T .

The input series Xt may also be governed by a stochastic model
ARMA(p,q) model.

The residual Zt is uncorrelated with the input process Xt′ for all t, t′, i.e.,
Zt ⊥ Xt′ .

The residuals Zt and Zt′ are usually correlated.

In the following, we assume that µX = µY = 0.
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Transfer function (TF) models

Estimation of cross-covariance
Assume that Xt is stationary.

cY,X(τ) = Cov{Yt+τ , Xt} =
∑∞
j=0 wjCov{Xt+τ−j , Xt}+ Cov{Zt+τ , Xt}

Since Zt ⊥ Xt′ for all t, t′, the cross-covariance cY,X(τ) is given by

cY,X(τ) =
∑∞
j=0 wjcX,X(τ − j).

The auto-covariance function can be replaced by its sample estimates.

If Xt is white noise then cY,X(τ) = wτ cX,X(0).

Hence, wτ =
cY,X(τ)
cX,X(0) .

However, this is not the typical case since Xt is usually correlated.
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Transfer function (TF) models

Considering a Realistic Example
Assume that Xt is a stationary process described by an ARMA(p,q)
model.

Consider that both Xt and Yt are centered so that µX = µY = 0.

TF Model: Yt =
∑m2

j=m1
wj Xt−j + Zt , t = m2 + 1, . . . , n.

Typically, zt is an ARMA(pz, qz) model.

The above is known as the transfer model, the finite distributed lag
model, or the dynamic regression model.

Positive m1,m2 indicate that the input Xt influences the response Yt but
not vice versa.

Based on the observations of Xt we estimate an “optimal” model
ARMA(p,q): φ(B)Xt = θ(B)εt (omit “hats” for simplicity).
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Transfer function (TF) models

Pre-whitening using Filtering
Assuming invertibility of the ARMA process, it holds that
εt = θ−1(B)φ(B)Xt , π(B)Xt.
π(B) = 1−

∑∞
i=1 πiB

i is the linear filter function.

Then, X̃t = π(B)Xt is a white noise series (use X̃t instead of εt).
By applying π(B) to both sides of the TF model we obtain:

Ỹt =

m2∑
j=m1

wj X̃t−j + Z̃t , where

X̃t =Xt − π1Xt−1 − π2Xt−2 − . . .
Ỹt =Yt − π1Yt−1 − π2Yt−2 − . . .
Z̃t =Zt − π1Zt−1 − π2Zt−2 − . . .

Since X̃t is white noise, it holds that wτ =
cỸ ,X̃(τ)

cX̃,X̃(0) , for τ = m1, . . . ,m2 .
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Transfer function (TF) models

Summary
1 Find an appropriate ARMA(p,q) model for the input series Xt.

2 Pre-whiten the input data with the corresponding linear filter: Xt 7→ X̃t.

3 Transform the output data Yt 7→ Ỹt by applying the same filter as for the
input data.

4 Construct cross-correlation plots between X̃t and Ỹt.

5 Based on the CCF plots deduce candidate values for the interaction lags
m1 and m2.

6 Using the estimated m1 and m2, construct fits of the data to
Yt =

∑m2

j=m1
wj Xt−j + Zt , t = m2 + 1, . . . , n for different model orders pz

and qz of the ARMA residuals Zt.

7 Choose the “optimal” model suggested by an appropriate selection
criterion (e.g., lowest AIC).
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Multivariate ARMA models

Multivariate ARMA model for stationary time series
Vector time series xt

xt = (x1,t, x2,t, . . . , xD,t)
>
, −∞ < t <∞

VARMA equation

xt =φ1xt−1 + φ2xt−2 + · · ·+ φpxt−p

+ εt − θ1εt−1 − θ2εt−2 − · · · − θqεt−q ,

Matrices of auto-regressive and moving average components

φk : D ×D matrix, k = 1, . . . , p

θk : D ×D matrix, k = 1, . . . , q

Vector Gaussian white noise: εt = (ε1,t, ε2,t, . . . , εD,t)
>

E[εt] = 0, E[εtε
>
t′ ] = 0, t 6= t′, E[εtε

>
t ] = Σε
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Multivariate ARMA models

Example of VARMA(2,1) system

(
x1,t
x2,t

)
=

(
φ1,11 φ1,12
φ1,21 φ1,22

)(
x1,t−1
x2,t−1

)
+

(
φ2,11 φ2,12
φ2,21 φ2,22

)(
x1,t−2
x2,t−2

)
+(

ε1,t
ε2,t

)
−
(
θ1,11 θ1,12
θ1,21 θ1,22

)(
ε1,t−1
ε2,t−1

)

VARMA models: Complicated estimation procedure.

VAR(p) Models

xt = φ1xt−1 + φ2xt−2 + · · ·+ φpxt−p + εt

VAR(p) models are VARMA(p,0) models.

Parameter estimation possible by multivariate least squares and
maximum likelihood.
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Multivariate ARMA models

Example of VAR(2) system
(

xt
yt

)
=

(
φ1,11 φ1,12
φ1,21 φ1,22

)(
xt−1

yt−1

)
+

(
φ2,11 φ2,12
φ2,21 φ2,22

)(
xt−2

yt−2

)
+

(
ε1,t
ε2,t

)

The diagonal elements of the matrices φk couple each time series to its
previous values.

φ1,11 and φ2,11 are lag-1 and lag-2 coefficients for the input series Xt.

φ1,22 and φ2,22 are lag-1 and lag-2 coefficients for the output series Yt.

The lower off-diagonal terms represent the influence of Xt on Yt (also
known as transfer mechanism).

The upper off-diagonal terms measure the influence of Yt on Xt (also
known as feedback).
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Introduction to Causality Analysis

The brain, climate, flock
behavior, and finance, are
all examples of complex
systems.

Complex systems are
driven, nonlinear,
dissipative, and comprise
many interacting parts.

How to model, predict,
and control responses in
complex systems?

Causality analysis offers a
data-driven approach for
studying interactions in
such systems.
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Introduction to Causality Analysis

Given two time series Xt and Yt, are there interactions of the form
Xt → Yt, Yt → Xt, Xt ↔ Yt (arrows imply directional interaction), or are
Xt and Yt independent ?

Linear correlation measures (e.g., Pearson correlation, cross-correlation
function) are inadequate for the following reasons:

1 Lack of correlation does not imply lack of dependence.

2 Correlation is symmetric, i.e., RX,Y = RY,X =⇒ no directionality.

Cause-effect relationships (Eichler, PRSA, 2013).
1 Temporal precedence: a cause precedes its effects in time.

2 Physical influence: Manipulations of the cause change the effects.
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Introduction to Causality Analysis

A Simple example
Solve numerically the following VAR(2) system:

xt =0.2xt−1 − 0.4xt−2 + εt

yt =0.25yt−1 + 1.5xt−1 + ε′t,

where εt and ε′t are independent innovation terms (Gaussian white
noise).

There is only Yt → Xt dependence in the above system.

However, the correlation coefficients RX,Y and RY,X are both non-zero.
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Introduction to Causality Analysis

Some Measures used in Causality Analysis
Wiener-Granger causality

Transfer entropy (Schreiber, 2000), which is a directed version of
Shannon’s mutual information

For Gaussian variables transfer entropy⇔ Granger causality

Nonlinear (kernel-based) Granger causality (Amblard et al., 2012;
Zaremba & Aste, 2014)

Convergent cross mapping (CCM) (Sugihara et al., 2012)
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Wiener-Granger Prediction

Main ideas
Granger prediction aims to determine whether including information from
a time series Y in a different time series X improves the predictions of
X—compared to those obtained without information from Y .

First, an AR model is constructed for X. The fit of this model is assessed
by means of the estimated innovation variance σ2

ε,x.

Then, a VAR model is constructed for X which includes both X and Y .
The innovation variance, σ2

ε,y→x, for this model is also calculated.

If σ2
ε,y→x is significantly lower than σ2

ε,x, then Y Granger causes X.

Granger causality essentially refers to directed functional interactions or
information flow.
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Wiener-Granger Prediction

The Granger prediction equations for two time series

xt =

p∑
i=1

aixt−i + εx,t, εx,t ∼ N(0, σ2
ε,x) (7)

yt =

p∑
i=1

biyt−i + εy,t, εy,t ∼ N(0, σ2
ε,y) (8)

xt =

p∑
i=1

a′ixt−i +

p∑
i=1

ciyt−i + εy→x,t, εy→x,t ∼ N(0, σ2
ε,y→x) (9)

yt =

p∑
i=1

b′iyt−i +

p∑
i=1

dixt−i + εx→y,t, εx→y,t ∼ N(0, σ2
ε,x→y) (10)

GPy→x = log

(
σ2
ε,x

σ2
ε,y→x

)
, GPx→y = log

(
σ2
ε,y

σ2
ε,x→y

)
, (11)

If GPy→x ≈ 0 =⇒ Y does not Granger-predict X.
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Simple Causality Analysis with Granger Prediction

Generate two time series based on AR(2) model

close all; clearvars;
L = 250; % Length of time series
p = 2; % Order of AR model
% define time series X and Y

5 x=randn(2,1); y=randn(2,1); % random initial conditions
for i=3: L

x(i) = .2*x(i-1) - .4*x(i-2) + randn;
y(i) = .25*y(i-1) - .8*x(i-2) + 1.5*x(i-1) + randn;

end
10 figure

plot(x,’mo-’,’linewid’,1,’markerface’,’k’,’markersize’,6)
hold on;
plot(y,’go-’,’linewid’,1,’markerface’,’k’,’markersize’,6)
title(’Stationary bivariate autoregression’)

15 axis tight;
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Simple Causality Analysis with Granger Prediction

Vector AR(2) model with two components
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Simple Causality Analysis with Granger Prediction

Determine optimal p order from data using BIC

armaxp = 15; % Maximum AR order tested
x = x(:)’; y = y(:)’;
Nr = 1; % One realization used.
% Determine optimal AR model order based on

5 % Bayesian Information Criterion (BIC)
bicm = zeros(armaxp,1);
for bici=1: armaxp

[Axy_test, E_test] = armorf([x; y], 1, L, bici);
bicm(bici) = log(det(E_test)) + (log(L)*bici*2ˆ2)/L;

10 end
figure;
plot(1:1:armaxp, bicm, ’b--’);
hold on;
plot(1:1:armaxp, bicm, ’ro’, ’MarkerFaceColor’, ’g’);

15 xlabel(’AR order’)
ylabel(’BIC’);
[minbic, popt] = min(bicm);
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Simple Causality Analysis with Granger Prediction

BIC for Vector AR(2) model with two components
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Simple Causality Analysis with Granger Prediction

Use optimal AR order from BIC to check GP

p = popt;
[Ax,Ex] = armorf(x, Nr, L, p);
[Ay,Ey] = armorf(y, Nr, L, p);
[Axy,E] = armorf([x; y], 1, L, p);

5 y2x =log(Ex/E(1,1));
x2y =log(Ey/E(2,2));
disp([’ln(var AR(p)/var VAR(p) Y-> X)=’ num2str(y2x)]);
disp([’ln(var AR(p)/var VAR(p) X-> Y)=’ num2str(x2y)]);

If y2x > 0, Y is said to Granger cause X. In practice, we need to perform a statistical test to
decide which non-zero values are significant.

Similarly, if x2y > 0, X is said to Granger cause Y .

armorf.m implements Morf’s modified Locally Weighted Regression method for AR coefficient
estimation: M. Morf, A. Vieira, D.T. Lee, and T. Kailath. Recursive multichannel maximum entropy
spectral estimation. IEEE Trans Geosci Electron. 1978; 16:85–94.
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Simple Causality Analysis with Granger Prediction

Results of Granger Prediction for the VAR(2) system

>> granger_causality

log(variance AR(p) / variance VAR(p) Y-> X)=0.0075709

5 log(variance AR(p) / variance VAR(p) X-> Y)=1.1439

H0: y does not Granger cause x: p value=0.34062

Test result: Y does not Granger-cause X
10

H0: x does not Granger cause y: p value=0

Test result: X Granger-causes Y

Note that y2x ≈ 0.0076 > 0 but the actual value is quite small, and the statistical test rejects Y → X

causation.
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Simple Causality Analysis with Granger Prediction

Limitations of Granger causality
Linearity

Stationarity

Time invariance

Exogenous inputs

Noise, insufficient sampling rates

Temporal/spatial aggregation generated by neural data acquisition

P. A. Stokes, P. L. Purdon (2017). A study of problems encountered in Granger causality analysis from a

neuroscience perspective. PNAS, 114(34), E7063–E7072. https://doi.org/10.1073/pnas.1704663114. L.

Barnett, A.B. Barrett, A.K. Seth (2018). Misunderstandings regarding the application of Granger causality in

neuroscience. PNAS, 115, E6676–7.
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For more information ...

Shumway and Stoffer (2016). Time Series Analysis and Its Applications: With
R Examples 3rd Edition, Springer, 4th edition.

Peter Bartlet (2010). Introduction to Time Series

Marcel Dettling (2017). Applied Time Series Analysis

D. Kougioumtzis (2019). Time Series Analysis

Box, G.E.P. and G.M. Jenkins (1970). Time series analysis: Forecasting and
control, San Francisco: Holden-Day.

Makridakis, S., S.C. Wheelwright, and R.J. Hyndman (1998). Forecasting:
methods and applications, New York: John Wiley & Sons.

Tsay, Ruey, S. (2010). Analysis of Financial Time Series, 3rd edition, New
York: John Wiley & Sons.
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