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Introduction

These notes are material that is developed during the teaching of the course “Optimiza-

tion.” Optimization is an area of Applied Mathematics with an extremely large impact on

Engineering Sciences, Economics, Operational Research etc.

The area of (Convex) Optimization is extremely active, with a wealth of contributions by

members of various scientific communities, such as Mathematicians, Engineers, Economists.

In this course, we will cover a relatively small subset of the region, which could be charac-

terized as introductory to the area of convex optimization.

Coverage will include

1. brief review of real function theory concepts,

2. elements of the theory of convex sets and convex functions,

3. definition of basic concepts of (convex) optimization problems,

4. extraction of optimality conditions,

5. definition of unconstrained convex optimization problems and the steepest descent

and Newton algorithms,

6. definition of convex optimization problems with linear constraints and solution by a

generalization of the Newton algorithm,

7. definition of convex optimization problems and solution by interior point method.

The following excellent books have significantly influenced the formatting of this material:

1. S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press,

2004.

2. M. Bazaraa, H. Sherali, C. Shetty. Nonlinear Programming. Theory and Algorithms.

Wiley, 2nd Edition, 1993.

3. A. Beck. Introduction to Nonlinear Optimization. SIAM, 2014.

4. D. Bertsekas. Nonlinear Programming. Athena Scientific, 2nd Edition, 1999.

A very useful book covering vector calculus is the following:
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1. J. Marsden and A. Tromba, Vector Calculus, W. H. Freeman; Sixth edition (Decem-

ber 16, 2011).

Your comments and suggestions are most welcome.

The instructor,

Athanasios P. Liavas



Chapter 1

Euclidean spaces

In this chapter, we will briefly present some basic elements of the theory of Euclidean

spaces. The book by Marsden and Tromba contains an extensive description and is an

excellent source.

We assume that the reader is familiar with the n-dimensional Euclidean space Rn, with

n ∈ N. If n = 1, then the corresponding space will be denoted as R. In the remainder of

the chapter, we generally assume that we are working on Rn.

1.1 Points - Vectors

Definition 1.1.1. Vector is called every ordered n-tuple, (x1, x2, . . . , xn), with xi ∈ R,

for i = 1, . . . , n.

x∗3

x1

x2

x3

x∗1

x∗

x∗2

Figure 1.1: Point in three-dimensional space.
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x∗3

x1

x2

x3

x∗1

x∗

x∗2

Figure 1.2: Vector in three-dimensional space.

Each vector will be denoted in three equivalent ways. More specifically, the three-dimensional

vector v = (x, y, z) will be denoted as

v = (x, y, z) =




x

y

z


 = [x y z]T , (1.1)

where the symbol [ · ]T means transpose.

Each vector corresponds to a point in n-dimensional space. For example, in Figure 1.1, we

draw the point x∗ = (x∗
1, x

∗
2, x

∗
3).

A more “geometric” representation of a vector x∗ = (x∗
1, x

∗
2, x

∗
3) is given by the directed

line segment, starting at the origin of the axes, i.e., the point 0 = (0, 0, 0), and ending at

the point x∗ (see Figure 1.2).

1.1.1 Vector Operations

Let x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) be vectors. Their sum z = x+y is defined

as the vector z = (x1 + y1, x2 + y2, . . . , xn + yn) .

Schematically, the sum of the vectors x and y is represented by the diagonal of the paral-

lelogram with sides the vectors x and y (see Fig. 1.3, for n = 2).

The vector y − x = (y1 − x1, y2 − x2, . . . , yn − xn) is the vector we should add to x to get

y (see Figure 1.3, for n = 2).

Let the vector x = (x1, . . . , xn). Then, the vector ax = (ax1, . . . , axn), with a ∈ R, is
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x

y

x+ y

y − x

y − x

Figure 1.3: Adding and subtracting vectors.

called scaling of x. If a > 0, then ax has the same direction as x while, if a < 0, then ax

has direction opposite to that of x.

1.1.2 Inner product and Norm

Definition 1.1.2. Let the vectors x = (x1, . . . , xn) and y = (y1, . . . , yn). Their inner

product is defined as follows

〈x,y〉 = xTy = yTx =

n∑

i=1

xiyi. (1.2)

Definition 1.1.3. As the Euclidean norm of the vector x = (x1, . . . , xn), we define the

non-negative real number

‖x‖2 = 〈x,x〉 1

2 =
(
x2
1 + · · ·+ x2

n

) 1

2 . (1.3)

The following important properties can be proved.

1. If x ∈ Rn, then ‖x‖2 ≥ 0, with equality if, and only if, x = 0.

2. If x ∈ Rn and a ∈ R, then ‖ax‖2 = |a| ‖x‖2.

3. If x,y ∈ R
n, then ‖x+y‖2 ≤ ‖x‖2+ ‖y‖2, with equality if, and only if, x = cy, with

c ∈ R.

Any function ‖ · ‖ : Rn → R+ satisfying the above conditions is called a norm function on

Rn.
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l(t) = x+ tv

x

v

Figure 1.4: A line that passes through the point x and is parallel to the vector v.

Theorem 1.1.1. Let the vectors x,y ∈ Rn. Then,

〈x,y〉 = ‖x‖2‖y‖2 cos∠(x,y), (1.4)

where ∠(x,y) is the angle between the vectors x and y.

Proof. For n = 3, see page 18 of the book by Marsden and Tromba.

Corollary 1.1.1. (Inequality Cauchy-Schwarz) Let x and y be vectors in Rn. Then

|〈x,y〉| ≤ ‖x‖2‖y‖2 (1.5)

with equality if, and only if, x and y are collinear, that is, x = ay for a ∈ R.

Proof. The proof is obvious from Theorem 1.1.1 and the fact that | cos(θ)| ≤ 1, for every

angle θ.

Definition 1.1.4. The vectors x and y in R
n are called orthogonal if 〈x,y〉 = 0.

If the vectors x and y are orthogonal, then we write x ⊥ y.

1.1.3 Lines

Let the vectors x,v ∈ Rn. The points described by the relationship

l(t) = x+ tv,

for t ∈ R, define the line which passes through point x and is parallel to the vector v (see

Figure 1.4).
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x

y − x

y

l(t) = x+ t(y − x)

Figure 1.5: A straight line that passes through the points x and y.

1.1.4 Straight line passing through the points x and y

Let the vectors x,y ∈ Rn. The points defined by the relation

l(t) = x + t(y − x), for t ∈ R, (1.6)

define the line that passes through the points x and y (see Figure 1.5).

We observe that, for t = 0, l(t) = x while, for t = 1, l(t) = y. An alternative description

of l(t) is as follows:

l(t) = (1− t)x+ ty. (1.7)

For t ∈ [0, 1], relation (1.7) defines the line segment connecting the points x and y.

1.1.5 Plane perpendicular to a vector

A plane P is a set of points for which it holds true that all points of the straight lines

connecting any two points of P belong to P. That is, if x1,x2 ∈ P and θ ∈ R, then

θx1 + (1− θ)x2 ∈ P.

Let P be a plane in R
n, y a point of P, and a ∈ R

n vector perpendicular to P. Then, for

every x ∈ P, the vector x− y is parallel to P. Therefore, the vector a is perpendicular to

x− y.

The mathematical description of the points of P is as follows:

P = {x ∈ R
n |〈x− y, a〉 = 0}

= {x ∈ R
n |xTa = yTa}

= {x ∈ R
n |xTa = c},

(1.8)

where c := yTa.

In general, we say that the equation (1.8) defines the hyperplane in Rn which passes

through the point y and is perpendicular to the vector a.
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If n = 2, then the hyperplane is simply a straight line, while, if n = 3, then the hyperplane

is a plane. In general, a hyperplane in Rn is a plane set with dimension (n−1) (equivalently,

with (n− 1) degrees of freedom). Expression (1.8) will prove extremely important later.

Exercise: Prove that the set P, defined by the relation (1.8), is a plane.

1.1.6 Open and Closed Sets

Definition 1.1.5. Let x ∈ Rn and r ∈ R++. The set

B(x, r) = {y ∈ R
n : ‖y− x‖2 < r} (1.9)

is called the (Euclidean) ball with center x and radius r.

The set B(x, r) is also called a neighborhood of x.

Definition 1.1.6. The point x ∈ S is called interior point of S if S contains a neighbor-

hood of x, that is, if there exists rx ∈ R++ such that B(x, rx) ⊂ S.

Definition 1.1.7. The set of interior points of the set S is called the interior of S.

Definition 1.1.8. A point x is called a boundary point of the set S if every neighborhood

of x contains at least one point that belongs to S and at least one point which does not

belong to S. The set of all its boundary points S is called the boundary of S.

A boundary point of the set S may not belong to S.

Definition 1.1.9. A set is called open if it contains only its interior points or, equivalently,

if it contains none of its boundary points.

Definition 1.1.10. A set is called closed if it contains its boundary.

It can be shown that a set is open if, and only if, its complement is closed.

A set may be neither open nor closed (give examples).

Definition 1.1.11. A set is called bounded if it is contained in a ball of finite radius.

Definition 1.1.12. A set is called compact if it is closed and bounded.
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Theorem 1.1.2. (Theorem Weierstrass) Let U ⊆ Rn be a compact set and let f : U → R

be a continuous function. Then, there exists a point x0 ∈ U such that f(x0) ≤ f(x), for

every x ∈ U.

Proof. The proof requires the use of some advanced Real Analysis concepts and is beyond

the scope of this course.

In words, this important theorem says that, if U is compact and f is continuous, then

there is a point of U which attains the minimum value of f in U. If U is not closed or

bounded, then we can easily construct examples in which the minimum value of f in U is

not attained.

1.2 Elements of function theory

1.2.1 Functions

Definition 1.2.1. Let U ⊆ Rn. The tranformation f : U → Rm, which maps each element

x ∈ U to one element of Rm, is called a function from U into Rm.

If in the definition 1.2.1 we have m = 1, then f is called a real function of n variables and

is denoted as f(x) or as f(x1, . . . , xn).

For example, the function

f(x1, x2) =
√

x2
1 + x2

2, with x1, x2 ∈ R,

is a real function of two variables, while

f(x1, x2, x3) = x1(x
2
2 + log2 x3), with x1, x2 ∈ R, x3 ∈ R++,

is a real function of three variables.

Definition 1.2.2. Let f : U ⊆ Rn → R. Then, the set

G
f = {(x, f(x)) ∈ R

n+1 |x ∈ U} (1.10)

is called the graph of f .

If n = 1, then the graph is a curve in R
2 (see Figure 1.6), while, if n = 2, then the graph

is a surface in R3.

If n > 2, then the graph is a hypersurface in Rn+1, which cannot be visualized.



12 CHAPTER 1. EUCLIDEAN SPACES

x

f(x)

Figure 1.6: Graph of a real function of one variable.

f(x1, x2) = c

x1

x2

Figure 1.7: Level sets of a real function of two variables.

1.2.2 Curves

Definition 1.2.3. A function f : A ⊆ R → R
n is called a curve in R

n.

Example 1.2.1. The function f : [0, 2π] → R2, with f(t) = (cos(t), sin(t)) defines the

circle centered at point (0, 0) with radius 1.

1.2.3 Level Sets

Definition 1.2.4. Let f : U ⊆ Rn → R and c ∈ R. The set

Sc := {x ∈ U | f(x) = c} (1.11)

is called the level set of f , for value c.

If n = 2, then we are talking about a level curve (see Figure 1.7), while if n = 3 then we

are talking about a level surface.

1.2.4 Limits of Sequences - Continuity of Functions

We assume that the reader is familiar with the concepts of vector sequences and convergence

of sequences of vectors as well as the concept of continuity of functions. The book by

Marsden and Tromba contains extensive coverage of these basic concepts.
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1.2.5 Derivative

The concept of differentiation is about approximating functions by linear (actually, affine)

functions. Next, we list basic definitions and properties of derivative functions.

Definition 1.2.5. Let U be an open subset of Rn and f : U → Rm. f is called differen-

tiable at the point x ∈ U if there existis an m× n matrix Af
x such that

lim
y→x

(‖f(y)− f(x)−Af
x(y − x)‖

‖y − x‖

)
= 0. (1.12)

The matrix Af
x is called the derivative (or Jacobian) of f at the point x and is denoted

as Df(x). The function f is called differentiable if it is differentiable at any point x ∈ U.

Next, we state three important properties of the derivative as theorems.

Theorem 1.2.1. If f : Rn → Rm and g : Rn → Rm are differentiable at the point x ∈ Rn,

then (f + g)(x) = f(x) + g(x) is also differentiable at x and

D(f + g)(x) = Df(x) +Dg(x). (1.13)

Proof. See page 101 of the book by Marsden and Tromba.

Theorem 1.2.2. If f : Rn → R and g : Rn → R are differentiable at the point x ∈ Rn,

then (f · g)(x) = f(x) · g(x) is also differentiable at x and

D(f · g)(x) = g(x)Df(x) + f(x)Dg(x). (1.14)

Proof. See page 101 of the book by Marsden and Tromba.

Theorem 1.2.3. Let f : Rn → Rm and h : Rk → Rn. If h is differentiable at x ∈ Rk and

f is differentiable at h(x) ∈ Rn , then f ◦ h is differentiable at x ∈ Rk and

D(f ◦ h)(x) = Df(h(x))Dh(x), (1.15)

where in the right side of (1.15) we have matrix multiplication.

Proof. See page 102 of the book by Marsden and Tromba.

In the Appendix, at the end of the chapter, we prove in detail a special case of Theorem

1.2.3.

If a function f is differentiable and its derivative, Df , is a continuous function, then we

say that f belongs to the family of functions C1.
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Definition 1.2.6. Let U be an open subset of Rn, f : U → R, x ∈ U, and ej , for

j = 1, . . . , n, the n-dimensional vector with elements 0 everywhere except from the j-th

position in which it has element 1. If the limit exists

lim
h→0

f(x+ hej)− f(x)

h
, (1.16)

then it is called the partial derivative of f with respect to the j-th coordinate, xj , at

the point x, and is denoted as ∂f

∂xj
(x) or as ∂f

∂xj
(x1, . . . , xn).

Next, we state an important theorem that connects the derivative of a function f with its

partial derivatives.

Theorem 1.2.4. Let U ⊆ Rn be an open set and f : U → R.

1. If f is differentiable at x ∈ U, then the partial derivatives ∂f

∂xi
(x) exist and the

derivative is equal to Df(x) =
[
∂f(x)
∂x1

· · · ∂f(x)
∂xn

]
.

2. If the partial derivatives of f at the point x exist and are continuous, then f is

differentiable at x and Df(x) =
[
∂f(x)
∂x1

· · · ∂f(x)
∂xn

]
.

3. f is C1 in U if, and only if, the partial derivatives of f exist and are continuous in U.

Proof. Check out a good Calculus book.

The existence of the partial derivatives of f does not automatically imply the differentia-

bility of f . The continuity of the partial derivatives is extremely important.

Definition 1.2.7. If f : Rn → R is differentiable, then the function ∇f : Rn → Rn, which

is defined as

∇f(x) =




∂f

∂x1
(x)
...

∂f

∂xn
(x)


 = Df(x)T , (1.17)

is called the gradient of f at the point x.

Later, we will prove some extremely important properties of ∇f(x).
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f(t0)

x1

x2

x3 f(t)

Df(t0)

Figure 1.8: Curve derivative.

Definition 1.2.8. Let f : Rn → R. If ∇f is differentiable at a point x ∈ Rn, then we say

that f is doubly differentiable at the point x. The second derivative of f is the derivative

of ∇f and is denoted by as follows:

∇2f(x) =




∂2f(x)

∂x2
1

∂2f(x)
∂x2∂x1

· · · ∂2f(x)
∂xn∂x1

∂2f(x)
∂x1∂x2

∂2f(x)
∂x2

2

· · · ∂2f(x)
∂xn∂x2

...
...

. . .
...

∂2f(x)
∂x1∂xn

∂2f(x)
∂x2∂xn

· · · ∂2f(x)
∂x2

n



. (1.18)

The (n×n) matrix ∇2f(x) is called theHessian of f at the point x. If ∇2f is a continuous

function at x, then the order of derivation does not matter (i.e., ∇2f(x) is a symmetric

matrix).

1.2.6 Derivative of a curve

Definition 1.2.9. If f : A ⊆ R → Rn, with f(t) = (f1(t), . . . , fn(t)), then the (n × 1)

vector Df(t0) = (Df1(t0), . . . , Dfn(t0)) is called the derivative of the curve f at the point

(f1(t0), . . . , fn(t0)).

The derivative Df can be expressed as

Df(t0) = lim
h→0

f(t0 + h)− f(t0)

h
. (1.19)

The vector Df(t0) is parallel to the line which is tangent to the curve f at the point f(t0)

(see Figure 1.8) and is expressed as follows:

l(t) = f(t0) + tDf(t0). (1.20)
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1.2.7 Directional Derivative

Definition 1.2.10. Let U ⊆ R
n be an open set and f : U → R. Let x ∈ U and 0 6= h ∈ R

n.

If the limit

lim
t→0+

(
f(x+ th)− f(x)

t

)
(1.21)

exists, it is called the directional derivative of f , at the point x in the direction h, and

is denoted as Df(x;h).

If the function f is differentiable, then an equivalent expression for the directional derivative

is

Df(x;h) =
d

dt
f(x+ th)

∣∣∣∣
t=0

. (1.22)

This holds because

d

dt
f(x+ th)

∣∣∣∣
t=0

= lim
∆t→0

f(x+ (t +∆t)h)− f(x+ th)

∆t

∣∣∣∣
t=0

= lim
∆t→0

f(x+∆th)− f(x)

∆t
.

(1.23)

Therefore, in this case, the two-sided limit, limt→0 exists, and is equal to the limit from

the right, limt→0+ .

Theorem 1.2.5. Let f : Rn → R be a differentiable function and x ∈ Rn. Then, for each

h ∈ Rn, the directional derivative Df(x;h) exists and is given by

Df(x;h) = Df(x)h = ∇f(x)Th. (1.24)

Proof. Let c(t) = x + th. Then f(x+ th) = f(c(t)). Using the chain rule, we have that

d

dt
f(c(t)) = Df(c(t))Dc(t). (1.25)

Furthermore, c(0) = x and Dc(t) = h. Therefore,

Df(x;h) =
d

dt
f(x+ th)

∣∣∣∣
t=0

=
d

dt
f(c(t))

∣∣∣∣
t=0

= Df(c(t))Dc(t)|t=0

= Df(c(0))Dc(0) = Df(x)h = ∇f(x)Th,

(1.26)

completing the proof.
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Choosing h ∈ Rn with ‖h‖2 = 1, we can interpret Df(x;h) as the rate of change of f at

the point x in the direction h.

A direct consequence of the Theorem 1.2.5 is the following.

Corollary 1.2.1. If Df(x;h) exists, then Df(x;−h) also exists and

Df(x;−h) = −Df(x;h). (1.27)

An extremely important theorem related to the rate of change of a function f is as follows.

Theorem 1.2.6. Let f : Rn → R be a smooth real function and x0 ∈ R
n, with∇f(x0) 6= 0.

Then, the vector ∇f(x0) “points” to the direction along which the rate of increase of f at

x0 is maximum, while −∇f(x0) “points” to the direction along which the rate of decrease

of f at x0 is maximum.

Proof. Let h be a vector with unit Euclidean norm in Rn. The rate of change of f at the

point x0 and in the direction h equals ∇f(x0)
Th. Then

∇f(x0)
Th = ‖∇f(x0)‖2 cos∠ (∇f(x0),h) (1.28)

and ∣∣∇f(x0)
Th
∣∣ = ‖∇f(x0)‖2 |cos∠ (∇f(x0),h)| ≤ ‖∇f(x0)‖2 , (1.29)

from which we obtain that

−‖∇f(x0)‖2 ≤ ∇f(x0)
Th ≤ ‖∇f(x0)‖2 . (1.30)

The left inequality holds as equality for h = − 1
‖∇f(x0)‖2 ∇f(x0), while the right inequality

holds as equality for h = 1
‖∇f(x0)‖2 ∇f(x0).

1.2.8 Gradient and function level sets

In this subsection, we prove another important result for the gradient.

We repeat that a function c : [a, b] ⊆ R → Rm is a curve. The curve c(t) can be expressed

as

c(t) =




c1(t)
...

cm(t)


 , (1.31)
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f(x) = c

x0

∇fx0

x0 + tv

Figure 1.9: Relationship of gradient vector ∇f and the level set of f at the point x0.

with ci : [a, b] → R, for i = 1, . . . , m. As we have seen, if c is differentiable at t ∈ [a, b],

then its derivative is the m-dimensional vector

Dc(t) = lim
h→0

c(t + h)− c(t)

h
. (1.32)

The ith element of Dc(t) is equal to the derivative of ci, for i = 1, . . . , m, and Dc(t) is

parallel to the straight line which is tangent to the curve c at the point c(t).

Theorem 1.2.7. Let f : Rn → R be a continuously differentiable real function and x0

a point of the level set Sc = {x ∈ Rn | f(x) = c}, with ∇f(x0) 6= 0. Then, the gradient

vector ∇f(x0) is orthogonal to the level set in the following sense (see Figure 1.9). If c(t)

is a smooth curve contained in the set Sc, with c(0) = x0, and v vector parallel to the line

tangent to c(t) at the point x0, for example, v = Dc(0), then

∇f(x0)
Tv = 0. (1.33)

Proof. Since the curve c(t) is contained in the set Sc, we have that f(c(t)) = c. Moreover,

c(0) = x0. From the chain rule, we have that

0 =
d

dt
f(c(t))

∣∣∣∣
t=0

= Df(c(t))Dc(t)|t=0

= Df(c(0))Dc(0)

= Df(x0)v

= ∇f(x0)
Tv,

(1.34)

completing the proof.

As a consequence of the Theorem 1.2.7, it is reasonable to define the plane which is tangent

to the level set of f , Sc, at point x0 ∈ Sc, as follows.



1.3. APPENDIX 19

Definition 1.2.11. Let f : Rn → R be differentiable and Sc = {x ∈ Rn | f(x) = c}. Then,
the plane tangent to Sc at the point x0 ∈ Sc, with ∇f(x0) 6= 0, is defined as

P
f
x0

= {x ∈ R
n | ∇f(x0)

T (x− x0) = 0}. (1.35)

Obviously, Pf
x0

contains the point x0. If x 6= x0 belongs to the tangent plane, then the vector

x− x0 is parallel to the tangent plane. But, we have proved that ∇f(x0) is perpendicular

to every tangent vector of any curve which lies on the surface Sc and passes through the

point x0. Therefore, the definition (1.35) is satisfactory.

1.2.9 Taylor expansions

Let f : Rn → R be a smooth real function. Then, the following extremely important

relationships hold true:

f(x) = f(x0) +∇f(x0)
T (x− x0) +O(‖x− x0‖2)

= f(x0) +∇f(x0)
T (x− x0)

+
1

2
(x− x0)

T∇2f(x0)(x− x0) +O(‖x− x0‖3),
(1.36)

which we call first- and second-order Taylor expansions, respectively.

If, in the above expressions, we ignore the terms denoted by O(·), then we have the first-

and second-order Taylor approximations, respectively.

Moreover, it can be shown that (see any good book on Calculus of Several Variables)

f(x) = f(x0) +∇f(z)T (x− x0) (1.37)

for some z = θx + (1− θ)x0, with 0 ≤ θ ≤ 1, and

f(x) = f(x0) +∇f(x0)
T (x− x0) +

1

2
(x− x0)

T∇2f(w)(x− x0), (1.38)

for some w = θx + (1− θ)x0, with 0 ≤ θ ≤ 1.

1.3 Appendix

In this appendix, we use first-order Taylor expansions and give a proof of a special form of

the chain rule.
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Let c : R → Rn be a smooth curve and f : Rn → R be a smooth real function. We define

g : R → R, with g(t) = (f ◦ c)(t) = f(c(t)). Suppose we want to calculate the derivative

Dg(t) = D(f ◦ c)(t). We remind you that

c(t+∆t) = c(t) +Dc(t)∆t+O(∆t2), (1.39)

f(x+∆x) = f(x) +Df(x)∆x+O(‖∆x‖22) (1.40)

Then

Dg(t) = lim
∆t→0

g(t+∆t)− g(t)

∆t

= lim
∆t→0

f(c(t+∆t))− f(c(t))

∆t
(1.39)
= lim

∆t→0

f (c(t) +Dc(t)∆t+O(∆t2))− f(c(t))

∆t
(1.40)
= lim

∆t→0

f (c(t)) +Df(c(t))Dc(t)∆t+O(∆t2)− f(c(t))

∆t

= Df(c(t))Dc(t).

(1.41)

1.4 Brief overview of technical proofs

Statements are denoted by capital letters, eg, P , Q, and will be true or false. For example,

the sentence

P = “2 is an even number.”

is true.

If P is a proposition, then the negation of P is a proposition, denoted by notP , and is

true if P is false and false if P is true (see the truth table below).

P notP

T F

F T

An important way of constructing sentences is by implication. Symbolically, we have

(P ⇒ Q) (If P , then Q) (P implies Q). (1.42)

The proposition P is called hypothesis and the proposition Q is called conclusion.

If the implication holds, we say that P is sufficient for Q and Q is necessary for P . The

truth table of the proposition P ⇒ Q is as follows:
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P Q P ⇒ Q

F F T

F T T

T F F

T T T

That is, if the hypothesis P is false, then the implication is true regardless of whether the

conclusion Q is true or false (this, at first, might seem a bit strange). If the hypothesis P is

true and the conclusion Q false, then the implication is false, while if both the hypothesis

and the conclusion are true, then the implication is true.

The proposition Q ⇒ P is called the inverse of P ⇒ Q while the proposition (notQ) ⇒
(notP ) is called the contrapositive of P ⇒ Q. The corresponding truth tables are as

follows:

P Q P ⇒ Q Q ⇒ P (notQ) ⇒ (notP ) not(P ∧ not(Q))

F F T T T T

F T T F T T

T F F T F F

T T T T T T

We observe that the statement P ⇒ Q is logically equivalent (has the same truth ta-

ble) with the proposition notQ ⇒ notP . Another proposition equivalent to P ⇒ Q is

not (P and (notQ)).

According to the above, in order to prove a proposition of the form P ⇒ Q, we have the

following basic options:

1. Direct proof: We start from the assumption P and, after “correct reasonings,” we

arrive at conclusion Q.

2. Proof via contraposition: We start from the hypothesis (notQ) and, after “correct

reasonings,” we conclude (notP ).

3. Proof via reductio ad absurdum: We start from the hypothesis P and (notQ)

and, after “correct reasonings,” we arrive at an assertion which is false.

1.4.1 Quantifiers

Important symbols that we use to construct sentences are the following: ∀ and ∃. The first
one denotes the universal quantifier while the second denotes the existential quantifier.
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For example, consider the statements

(∀x)(∃y)(x+ y = 0)

and

(∃y)(∀x)(x+ y = 0).

The first statement is true, while the second is false. Therefore, the “order” of the quan-

tifiers matters.

The negation of simple sentences with quantifiers is constructed as follows:

not ((∀x)P ) ≡ (∃x) not(P ),

not ((∃x)P ) ≡ (∀x) not(P ).

If the sentences are more complex, we work as follows:

not [(∀x)(∃y)(x+ y = 0)]

≡ (∃x) not [(∃y)(x+ y = 0)]

≡ (∃x) (∀y) not(x+ y = 0)

≡ (∃x) (∀y) (x+ y 6= 0).

The last proposition asserts that there exists x such that for every y the sum x + y is

nonzero. This proposition is false.



Chapter 2

Convex sets

2.1 Affine sets

Definition 2.1.1. A set C ⊆ Rn is called affine if the points of the lines joining any two

points of C belong to C. That is, if x,y ∈ C and θ ∈ R, then θx+ (1− θ)y ∈ C.

In other words, the set C is called affine if it contains every linear combination of any two

of its points, under the condition that the coefficients of the linear combination sum to

one.

Example 2.1.1. Prove that the solution set of the equation Ax = b is an affine set.

The proof is as follows. If the system has no solutions, then the solution set is ∅, which is

an affine set.

x1

x2

θx1 + (1− θ)x2

Figure 2.1: The affine set θx1 + (1− θ)x2.

23
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V = C− x0

C

x0

Figure 2.2: Affine set C and subspace V− x0.

Let x1 and x2 be solutions of the equation Ax = b and θ ∈ R. Then

Ax1 = b, Ax2 = b

⇒ A(θ x1) = θ b, A((1− θ)x2) = (1− θ)b

⇒ A (θx1 + (1− θ)x2)) = b.

(2.1)

Therefore, the point θx1+(1− θ)x2 is a solution of the equation Ax = b. So, the solution

set is affine. �

Exercise: Let x1,x2 ∈ R
n. Find the set aff{x1,x2}.

Definition 2.1.2. If x1, . . . ,xk ∈ Rn, θ1, . . . , θk ∈ R, with

θ1 + · · ·+ θk = 1,

then every expression of the form θ1x1 + · · · + θkxk is called an affine combination of

x1, . . . ,xk.

Using induction and the definition 2.1.1, it can be shown that an affine set contains every

affine combination of its elements. That is, if C is an affine set, k ∈ N, x1, . . . ,xk ∈ C, and

θ1 + · · ·+ θk = 1, then θ1x1 + · · ·+ θkxk ∈ C (prove it).

Theorem 2.1.1. If C is an affine set and x0 ∈ C, then the set

V = C− x0 = {x− x0 |x ∈ C} (2.2)

is a linear subspace.
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Proof. We must prove that if v1,v2 ∈ V and a1, a2 ∈ R, then a1v1 + a2v2 ∈ V.

Suppose that v1,v2 ∈ V. Then, there exist x1,x2 ∈ C such that v1 = x1 − x0 and

v2 = x2 − x0. Let a1, a2 ∈ R. Then

a1v1 + a2v2 = a1(x1 − x0) + a2(x2 − x0)

= a1x1 + a2x2 − (a1 + a2)x0

= a1x1 + a2x2 − (a1 + a2)x0 + x0 − x0

= [a1x1 + a2x2 + (1− a1 − a2)x0]− x0

= x∗ − x0,

(2.3)

where x∗ := a1x1 + a2x2 + (1 − a1 − a2)x0 ∈ C (why?). So, any linear combination of v1

and v2 can be expressed as x∗ − x0, with x∗ ∈ C and, thus, belongs to V.

Similarly, it can be shown that every affine set C can be expressed as a translation of a

linear subspace V, that is

C = V+ x0 = {v + x0 |v ∈ V} , (2.4)

with x0 ∈ C. Vector x0 in the above definitions is not unique. Actually, it might be any

point of C.

The dimension of C is defined as the dimension of V.

Definition 2.1.3. The set of the affine combinations of the elements of a set C ⊆ Rn is

called the affine hull of C and is denoted as aff C.

That is,

aff C = {θ1x1 + · · ·+ θkxk |x1, . . . ,xk ∈ C, θ1 + · · ·+ θk = 1}. (2.5)

The affine hull of a set C is the smallest affine set that contains C, in the following sense:

if S is an affine set with C ⊆ S, then affC ⊆ S.

2.1.1 Affine Dimension and Relative Interior

The affine dimension of a set C is the dimension of its affine hull.

If the affine dimension of a set C ⊆ Rn is less than n, then C lies in the affine set aff C 6= Rn.

We define as relative interior of the set C the set

relintC = {x ∈ C |B(x, r) ∩ aff C ⊆ C, for some r > 0}, (2.6)
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(b)

(a) (c)

(d)

Figure 2.3: Examples of convex sets (a), (b), (c) and non-convex set (d).

where

B(x, r) = {y ∈ R
n | ‖y− x | ≤ r},

and as relative boundary the set clC \ relintC.

Example 2.1.2. Consider the square

C = {x ∈ R
3 | − 1 ≤ x1 ≤ 1,−1 ≤ x2 ≤ 1, x3 = 0}.

The affine hull of C is the set aff C = {x ∈ R3 | x3 = 0}. The interior of C is empty (why?)

while its boundary is set C itself. But the relative interior of C is the set

relintC = {x ∈ R
3 | − 1 < x1 < 1,−1 < x2 < 1, x3 = 0},

and its relative boundary is the set

{x ∈ R
3 | max{|x1|, |x2|} = 1, x3 = 0}.

2.2 Convex sets

Definition 2.2.1. A set C ⊆ Rn is called convex if the points of the line segments

connecting any two points of C belong to C. That is, if, for every x1,x2 ∈ C and 0 ≤ θ ≤ 1,

we have that

θx1 + (1− θ)x2 ∈ C. (2.7)

We can easily see that every affine set is convex.

Definition 2.2.2. Let k ∈ N, x1, . . . ,xk ∈ Rn, and θ1, . . . , θk ∈ R, with θi ≥ 0, for

i = 1, . . . , k, and θ1 + · · · + θk = 1. The point θ1x1 + · · · + θkxk is called a convex

combination of x1, . . . ,xk.
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Theorem 2.2.1. A set C is convex if, and only if, it contains all convex combinations of

its points, that is, if k ∈ N, x1, . . . ,xk ∈ C, θ1, . . . , θk ∈ R, with θi ≥ 0, for i = 1, . . . , k,

and θ1 + · · ·+ θk = 1, then θ1x1 + · · ·+ θkxk ∈ C.

Proof. (Inverse) The proof of the inverse is simple and we will start with it. Since C

contains the convex combinations of its elements for any k ∈ N, it also contains the convex

combinations of its elements for k = 2. Therefore, it is a convex set.

(Direct) The proof will be done by induction.

For k = 2, the theorem holds by the definition of convex set.

We assume that the theorem holds for k = n.

Let k = n + 1, xi ∈ C, θi ∈ R, θi ≥ 0, for i = 1, . . . , n + 1, with
∑n+1

i=1 θi = 1 and

x =
∑n+1

i=1 θixi. We assume that θn+1 6= 0 and define θ :=
∑n

i=1 θi. Then, θn+1 = 1− θ and

x =

n+1∑

i=1

θixi =

n∑

i=1

θixi + θn+1xn+1 = θ

(
n∑

i=1

θi
θ
xi

)
+ θn+1xn+1.

If we define θ′i :=
θi
θ
, for i = 1, . . . , n, we observe that the expression

∑n

i=1 θ
′
ixi is a convex

combination of n elements of C. We define x′ =
∑n

i=1 θ
′
ixi. From the induction hypothesis,

we conclude that x′ ∈ C. Finally, we find that x ∈ C because it can be expressed as a

convex combination of two points of C, as follows

x = θx′ + (1− θ)xn+1.

Therefore, the proposition holds for k = n+ 1 and the proof is complete.

Definition 2.2.3. The convex hull of a set C is the set of all convex combinations of its

elements and is denoted as convC. That is,

convC = {θ1x1 + · · ·+ θkxk |xi ∈ C, θi ≥ 0, i = 1, . . . , k,

θ1 + · · ·+ θk = 1}.
(2.8)

It can be shown that the set convC is the smallest convex set containing C (prove it).

Exercise: Let x1,x2 ∈ Rn. Find the set conv{x1,x2}.

2.3 Cones

Definition 2.3.1. A set C ⊆ Rn is called cone if for every x ∈ C and θ ≥ 0, we have that

θx ∈ C.
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(a) (b)

Figure 2.4: Convex cone (a), non-convex cone (b).

Notice that if C 6= ∅, then 0 ∈ C (why?).

A set C is a convex cone if it is, at the same time, convex set and cone (see Figure 2.4).

Exercise: Let C be a convex cone. Prove that, if x1,x2 ∈ C and θ1, θ2 ≥ 0, then

θ1x1 + θ2x2 ∈ C. (2.9)

Proof: Let x1,x2 ∈ C and θ1, θ2 ≥ 0. If θ1 = θ2 = 0, then θ1x1 + θ2x2 = 0 ∈ C.

Let θ1 6= 0 or θ2 6= 0. Then, due to the convexity of C, we have that

θ1
θ1 + θ2

x1 +
θ2

θ1 + θ2
x2 ∈ C. (2.10)

Moreover, C is a cone, therefore,

(θ1 + θ2)

(
θ1

θ1 + θ2
x1 +

θ2
θ1 + θ2

x2

)
∈ C. (2.11)

That is, θ1x1 + θ2x2 ∈ C. �

Definition 2.3.2. Let k ∈ N, x1, . . . ,xk ∈ Rn, and θ1, . . . , θk ∈ R, with θi ≥ 0, for

i = 1, . . . , k. The vectors of the form

θ1x1 + · · ·+ θkxk

are called conic combinations of x1, . . . ,xk.

A set C is a convex cone if, and only if, it contains all conic combinations of its elements.

Definition 2.3.3. The conic hull of a set C is the set of the conic combinations of its

elements, that is, the set

{θ1x1 + · · ·+ θkxk |xi ∈ C, θi ≥ 0, i = 1, . . . , k}. (2.12)

It can be shown that the conic hull of a set C is the smallest convex cone which contains

C.
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aTx = b

aTx ≥ b

aTx ≤ b

a

Figure 2.5: Hyperplane - Halfspaces.

2.4 Examples of Convex Sets

∅, the singleton {x0}, and Rn are affine and, thus, convex sets.

Straight lines are affine and, therefore, convex sets, while line segments are convex but not

affine sets.

2.5 Hyperplanes - Halfspaces

Let 0 6= a ∈ Rn. A hyperplane in Rn is a set of the form

P = {x ∈ R
n | aTx− b = 0}. (2.13)

A hyperplane divides Rn into two half-spaces, as follows:

P
+ = {x ∈ R

n | aTx− b ≥ 0}, P
− = {x ∈ R

n | aTx− b ≤ 0}. (2.14)

The set P is affine and, therefore, convex. The sets P+ and P− are convex but not affine

(prove it).

2.5.1 Euclidean balls

The Euclidean ball on Rn, with center xc and radius r, is defined as

B(xc, r) = {x ∈ R
n | ‖x− xc‖2 ≤ r}. (2.15)

Another representation of the Euclidean ball is as follows:

B(xc, r) = {xc + rx | ‖x‖2 ≤ 1}. (2.16)
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E(xc,P)
B(xc, r)

xc
xc

r

Figure 2.6: Euclidean ball and ellipsoid.

Euclidean balls are convex sets. The proof is as follows. Let x1,x2 ∈ B(xc, r). This means

that ‖xi − xc‖2 ≤ r, for i = 1.2. We must prove that, for 0 ≤ θ ≤ 1, we have that

x := θx1 + (1− θ)x2 ∈ B(xc, r),

that is, ‖x− xc‖2 ≤ r.

We proceed as follows:

‖x− xc‖2 = ‖θx1 + (1− θ)x2 − xc‖2
= ‖θ(x1 − xc) + (1− θ)(x2 − xc)‖2
≤ ‖θ(x1 − xc)‖2 + ‖(1− θ)(x2 − xc)‖2
= θ‖x1 − xc‖2 + (1− θ)‖x2 − xc‖2
≤ θ r + (1− θ) r

= r,

(2.17)

therefore, x ∈ B(xc, r).

2.5.2 Ellipsoids

If P = PT ≻ O and xc ∈ Rn, then the set

E(xc,P) =
{
x ∈ R

n | (x− xc)
TP−1(x− xc) ≤ 1

}
(2.18)

is called ellipsoid with center xc.

An alternative description of E is as follows:

E(xc,A) = {xc +Au | ‖u‖2 ≤ 1}, (2.19)

with A = P
1

2 .
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Ax ≤ b

Figure 2.7: Polyhedron Ax ≤ b.

Ellipsoids are convex sets. Next, we will give a proof for the case where xc = 0 (the proof

generalizes to every xc).

Let x1,x2 ∈ E(0,P), that is, xT
i P

−1xi ≤ 1, for i = 1.2. We must prove that, if 0 ≤ θ ≤ 1

and x := θx1 + (1− θ)x2, then xTP−1x ≤ 1. First, we have

xTP−1x = (θx1 + (1− θ)x2)
T
P−1 (θx1 + (1− θ)x2)

= θ2x1P
−1x1 + (1− θ)2x2P

−1x2 + 2θ(1− θ)xT
1P

−1x2

≤ θ2 + (1− θ)2 + 2θ(1− θ)xT
1P

−1x2.

(2.20)

If we define yi := P− 1

2xi, for i = 1.2, then ‖yi‖22 = xT
i P

−1xi ≤ 1, for i = 1.2, and

xT
1P

−1x2 =
(
P− 1

2x1

)T (
P− 1

2x2

)

= yT
1 y2

(a)

≤ ‖y1‖2‖y2‖2
≤ 1,

(2.21)

where at point (a) we used the Cauchy-Schwarz inequality. Since 0 ≤ θ ≤ 1, we have that

θ(1− θ) ≥ 0, and

θ(1− θ)xT
1P

−1x2 ≤ θ(1− θ). (2.22)

Therefore,

xTP−1x ≤ θ2 + (1− θ)2 + 2θ(1− θ) = 1. (2.23)

Thus, the point x belongs to the ellipsoid E(0,P) and the set E(0,P) is convex.
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2.5.3 Polyhedra

We define a polyhedron as the solution of a finite set of linear inequalities and linear

equalities (see Figure 2.7). For example, the set

D = {x ∈ R
n | aT

j x− bj ≤ 0, j = 1, . . . , m,

cTj x− dj = 0, j = 1, . . . , p}
(2.24)

is a polyhedron.

Thus, a polyhedron is the intersection of a finite number of half-spaces and hyperplanes.

Affine sets, line segments, and half-spaces are polyhedra.

Exercise: Prove that polyhedra are convex sets.

2.6 Set operations that preserve convexity

2.6.1 Intersection

If S1, S2 ⊆ Rn are convex sets, then their intersection S1 ∩ S2 is a convex set. The above

proposition generalizes to any number (finite or infinite) of convex sets.

More specifically, if i ∈ I, where I is any set of indices, and Si is convex set, for each i ∈ I,
then the set

S = ∩i∈I Si (2.25)

is convex. The proof is as follows.

Let x1,x2 ∈ S. This means that x1,x2 ∈ Si, for i ∈ I. If 0 ≤ θ ≤ 1, then, due to the

convexity of Si, for i ∈ I, we will have that x := θx1+(1− θ)x2 ∈ Si, for i ∈ I. Therefore,
x ∈ S, proving that S is a convex set.

2.6.2 Cartesian product

Theorem 2.6.1. If S1 ⊆ R
n and S2 ⊆ R

m are convex sets, then the Cartesian product

S = S1 × S2 ⊆ Rn+m is convex set.

Proof. We must prove that, if x1,x2 ∈ S and 0 ≤ θ ≤ 1, then θx1 + (1− θ)x2 ∈ S.

Let x1,x2 ∈ S. Then, there exist x11,x12 ∈ S1 and x21,x22 ∈ S2 such that

x1 =

[
x11

x21

]
, x2 =

[
x12

x22

]
.
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Since the sets S1 and S2 are convex, for each 0 ≤ θ ≤ 1, θx11 + (1 − θ)x12 ∈ S1 and

θx21 + (1− θ)x22 ∈ S2. Therefore,
[
θx11 + (1− θ)x12

θx21 + (1− θ)x22

]
∈ S1 × S2

=⇒ θ

[
x11

x21

]
+ (1− θ)

[
x12

x22

]
∈ S1 × S2

=⇒ θx1 + (1− θ)x2 ∈ S,

(2.26)

completing the proof.

2.6.3 Image of affine function

A function f : Rn → Rm is called affine if it is the sum of a linear function and a constant,

that is, if it is of the form f(x) = Ax+ b, with A ∈ Rm×n and b ∈ Rm.

Theorem 2.6.2. Let S ⊆ Rn be a convex set and f : Rn → Rm an affine function. Then,

the image of S under f ,

f(S) = {f(x) |x ∈ S}, (2.27)

is a convex set.

Proof. We must prove that, if y1,y2 ∈ f(S) and 0 ≤ θ ≤ 1, then y = θy1+(1−θ)y2 ∈ f(S).

Let y1,y2 ∈ f(S). This means that there exist x1,x2 ∈ S such so that yi = Axi + b, for

i = 1, 2.

Due to the convexity of S, we have that, for 0 ≤ θ ≤ 1, x = θx1 + (1 − θ)x2 ∈ S. The

image of x is given by the relation

f(x) = Ax+ b

= A (θx1 + (1− θ)x2) + b

= θ (Ax1 + b) + (1− θ) (Ax2 + b)

= θy1 + (1− θ)y2

= y.

(2.28)

Therefore, y = f(x) ∈ f(S) and the proof is complete.

Corollary 2.6.1. If f : Rk → Rn is an affine function and S ⊆ Rn is a convex set, then

the inverse image of S under f , i.e., the set

f−1(S) = {x | f(x) ∈ S}, (2.29)
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is a convex set.

Proof. The proof is based on the fact that the inverse of an affine function is an affine

function. For example, if m > n and the columns of A are linearly independent, then if

y = f(x) = Ax+ b, the inverse function is given by the relation

x = f−1(y) =
(
ATA

)−1
AT (y− b)

=
(
ATA

)−1
ATy −

(
AT bfA

)−1
ATb

= A′y + b′,

(2.30)

with A′ :=
(
ATA

)−1
AT and b′ := −

(
ATA

)−1
ATb , which is an affine function.

Next, we will present some important applications of the Theorem 2.6.2.

2.6.4 Set Scaling

Corollary 2.6.2. If S ⊆ Rn is a convex set and a ∈ R, then the set a S = {ax |x ∈ S} is

convex.

Proof. This proposition is a consequence of Theorem 2.6.1, for the affine (actually, linear)

function f : S → Rn with f(x) = ax.

2.6.5 Set translation

Corollary 2.6.3. If S ⊆ Rn is a convex set and a ∈ Rn, then the set S+a = {x+a |x ∈ S}
is convex.

Proof. This proposition is a consequence of Theorem 2.6.1, for the affine function f : S →
Rn with f(x) = x+ a.

2.6.6 Projection

Corollary 2.6.4. The projection of a convex set onto some of its coordinates results in a

convex set. More specifically, if S ⊆ Rn+m is a convex set, then the set

T = {x1 ∈ R
n | (x1,x2) ∈ S}. (2.31)

is convex.

Proof. The proof is left to the reader.
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aA, a > 1
A+ B

A

B A

Figure 2.8: Sum of convex sets and scaling of convex sets.

aTx ≥ b

aTx ≤ b

C
D

Figure 2.9: Hyperplane separating convex sets.

2.6.7 Sum of sets

If S1, S2 ⊆ Rn, then their sum is defined as

S1 + S2 = {x1 + x2 |x1 ∈ S1,x2 ∈ S2}. (2.32)

Corollary 2.6.5. If S1 and S2 are convex, then S1 + S2 is convex.

Proof. One way to prove this corollary is to observe the following:

1. S1 × S2 is convex (Cartesian product of convex sets),

2. the image of the convex set S1×S2 under the affine transformation f : S1×S2 → Rn

defined as

f(x1,x2) = [ In In ]

[
x1

x2

]
= x1 + x2 (2.33)

is the sum S1 + S2.

2.7 Separating hyperplanes

Theorem 2.7.1. Let C,D ⊆ Rn be convex sets that do not intersect, that is, C ∩ D = ∅.
Then, there exist 0 6= a ∈ Rn and b ∈ R, such that aTx ≥ b for every x ∈ C and aTx ≤ b

for every x ∈ D (see Figure 2.9).
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C

x0

aTx = aTx0

Figure 2.10: Supporting hyperplane of set C at point x0.

The hyperplane {x | aTx = b} is called separating hyperplane of C and D.

Proof. See pages 46–48 of the book by Boyd and Vandenberghe.

2.8 Supporting hyperplanes

Theorem 2.8.1. Let C ⊆ Rn be a nonempty convex set and x0 ∈ bdC. Then, there

exists 0 6= a ∈ R
n such that aTx ≤ aTx0, for every x ∈ C.

Proof. See page 51 of Boyd and Vandenberghe.

Theorem 2.8.1 basically says that the point x0 and the set C are separated by the hyper-

plane P = {x ∈ R
n | aTx = aTx0} (see Fig. 2.10).



Chapter 3

Convex functions

In this Chapter, we shall briefly consider significant properties of convex functions.

3.1 Convex Functions

Definition 3.1.1. A function f : domf ⊆ Rn → R is called convex if the set domf is

convex and if, for each x,y ∈ domf and 0 ≤ θ ≤ 1, it holds that

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y). (3.1)

Geometrically, the inequality (3.1) implies that no point of the line segment connecting

the points (x, f(x)) and (y, f(y)) lies under the graph of f (see Fig. 3.1).

Definition 3.1.2. A function f : domf ⊆ Rn → R is called strictly convex if the set

domf is convex if, for every x,y ∈ domf , with x 6= y, and 0 < θ < 1, it holds that

f(θx+ (1− θ)y) < θf(x) + (1− θ)f(y). (3.2)

Geometrically, the inequality (3.2) means that, with the exception of the points (x, f(x))

and (y, f(y)), the line segment connecting the points (x, f(x)) and (y, f(y)) lies above the

graph of f (see Fig. 3.1).

The function f is called concave if −f is convex.

An affine function is, at the same time, convex and concave.

37
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(x1, f(x1))

x

f(x)

(x0, f(x0))

Figure 3.1: Convex function.

The relation (3.1) is generalized as follows. Let f : domf ⊆ R
n → R be a convex function,

xi ∈ domf , for i = 1, . . . , n, and ai ≥ 0, for i = 1, . . . , n, with a1 + · · ·+ an = 1. Then

f

(
n∑

i=1

aixi

)
≤

n∑

i=1

aif(xi). (3.3)

This inequality is sometimes called Jensen’s inequality.

It can be shown that a function f is convex if, and only if, its restriction on the intersection

of any straight line in Rn and its domain domf is a convex function.

Theorem 3.1.1. The function f : domf ⊆ Rn → R is convex if, and only if, for each

x ∈ domf and v ∈ Rn, the function g(t) = f(x+tv), with domain the set {t ∈ R |x+tv ∈
domf}, is convex.

Proof. A proof appears in the Appendix at the end of this chapter.

Convex functions have some very important properties. For example, they are continuous

on the interior of their domain. Discontinuities can only exist on the boundary of their

domain.

The theory of convex functions is extensive. In this chapter, we will cover only the topics

which are necessary for our developments.
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y

f(x) +∇f(x)T (y − x)

x

f(y)

f(x)

Figure 3.2: First order convexity condition.

3.2 First Order Conditions

Theorem 3.2.1. Let domf ⊆ Rn be an open set and f : domf → R be a differentiable

function. Function f is convex if, and only if, domf is a convex set and

f(y) ≥ f(x) +∇f(x)T (y − x), (3.4)

for any x,y ∈ domf .

The inequality (3.4) is very important. It states that the first-order Taylor approximation

at any point of the domain of a convex function is a global underestimator of the function.

That is, from local information (the values of the function and its derivative at a point),

we get global information (a global underestimator of the function).

Proof. (Direct) Let f be a convex function and x,y ∈ domf . Then, for 0 < θ ≤ 1 we have

that (1− θ)x+ θy = x + θ(y − x) ∈ domf and

f(x+ θ(y − x)) ≤ (1− θ)f(x) + θf(y).

Dividing both sides of the above inequality by θ, and after simple algebraic manipulations,

we obtain

f(y) ≥ f(x) +
f(x+ θ(y − x))− f(x)

θ
.

Taking the limit for θ → 0+, we get (why?)

f(y) ≥ f(x) +∇f(x)T (y − x),
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which is the relation to be proved.

(Inverse) Assume that (3.4) holds for every x,y ∈ domf . Let x1,x2 ∈ domf , with

x1 6= x2, and 0 ≤ θ ≤ 1 and set x = θx1 + (1− θ)x2.

Using (3.4) twice, we get

f(x1) ≥ f(x) +∇f(x)T (x1 − x), (3.5)

f(x2) ≥ f(x) +∇f(x)T (x2 − x). (3.6)

Multiplying (3.5) by θ and (3.6) with (1− θ) and adding the inequalities, we obtain

θf(x1) + (1− θ)f(x2) ≥ f(x) +∇f(x)T (θx1 + (1− θ)x2 − x)

= f(x),

proving that f is convex.

3.3 Second Order Conditions

Theorem 3.3.1. Let domf ⊆ Rn be an open set and f : domf → R be continuous

doubly differentiable function. Function f is convex if, and only if, domf is a convex set

and

∇2f(x) � O (3.7)

for any x ∈ domf .

Proof. (Direct) Let f be a convex function, x ∈ domf , and h ∈ Rn . Since domf is an

open set, we have that x+ λh ∈ domf , for |λ| sufficiently small. From (3.4), we get

f(x+ λh) ≥ f(x) + λ∇f(x)Th.

From the second-order Taylor expansion, we have

f(x+ λh) = f(x) + λ∇f(x)Th+
λ2

2
hT∇2f(x)h+O(λ3).

Combining the above two relations, we obtain that

λ2

2
hT∇2f(x)h+O(λ3) ≥ 0.

Dividing by λ2, we obtain
1

2
hT∇2f(x)h+O(λ) ≥ 0.
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Taking the limit as λ → 0, we obtain

hT∇2f(x)h ≥ 0,

for every h ∈ Rn, which gives that, for every x ∈ domf ,

∇2f(x) � O.

(Inverse) We must prove that, if ∇2f(x) � O for every x ∈ domf , then f is convex.

From the second-order Taylor expansion, we get

f(y) = f(x) +∇f(x)T (y − x) +
1

2
(y − x)T∇2f(z)(y− x),

with z = λx+ (1− λ)y, for some λ ∈ [0, 1].

Since we have assumed that ∇2f(x) � 0 for every x ∈ domf , we have that ∇2f(z) � O,

which implies that

(y− x)T∇2f(z)(y− x) ≥ 0.

Therefore, for each x,y ∈ domf ,

f(y) ≥ f(x) +∇f(x)T (y − x),

and, by Theorem 3.4, we conclude that f is convex.

3.4 Examples of Convex Functions

Example 3.4.1. In the sequel, we provide examples of scalar convex and concave functions.

1. f(x) = eax is convex in R, for every a ∈ R.

2. f(x) = xa is convex in R++ if a ≥ 1 or a ≤ 0, and concave if 0 ≤ a ≤ 1.

3. f(x) = |x|p is convex in R, for p ≥ 1.

4. f(x) = log(x) is concave in R++.

Example 3.4.2. Quadratic functions. Let f : Rn → R, with

f(x) =
1

2
xTPx+ qTx+ r,
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Sc

Figure 3.3: Sublevel set of a convex function.

with P ∈ Rn×n and P = PT , q ∈ Rn and r ∈ R.

It can be proved that

∇f(x) = Px+ q

and

∇2f(x) = P.

From the second-order conditions, we conclude that f is convex (strictly convex) if, and

only if, P � O ( P ≻ O ).

Example 3.4.3. In the sequel, we provide examples of vector convex and concave func-

tions.

1. f(x) = ‖x‖ is convex in Rn, where ‖ · ‖ is any norm in Rn.

2. f(x) = max{x1, . . . , xn} is convex in Rn.

3. The function f(x) = log (ex1 + · · ·+ exn) is convex in Rn.

4. The function f(x) = (
∏n

i=1 xi)
1

n is concave in Rn
++.

3.5 Sublevel Sets

Definition 3.5.1. Let f : domf ⊆ Rn → R. The set

Sc = {x ∈ domf | f(x) ≤ c} (3.8)

is called the c-sublevel set of f .
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x

f(x)

Figure 3.4: Epigraph of a convex function.

Theorem 3.5.1. If f : domf ⊆ Rn → R is a convex function, then the c-sublevel set Sc

is convex, for every c ∈ R.

Proof. [We must prove that if x1,x2 ∈ Sc and 0 ≤ θ ≤ 1, then x = θx1 + (1− θ)x2 ∈ Sc].

Let x1,x2 ∈ Sc and 0 ≤ θ ≤ 1. Then, f(x1) ≤ c and f(x2) ≤ c, and x = θx1 + (1− θ)x2 ∈
domf . Furthermore,

f(x) = f(θx1 + (1− θ)x2) ≤ θf(x1) + (1− θ)f(x2)

≤ θ c+ (1− θ) c

= c.

Therefore, x = θx1 + (1− θ)x2 ∈ Sc.

We must point out that the inverse proposition does not hold. For example, the sublevel

sets of the function f : R+ → R, with f(x) = log(x), are convex. But, the function f is

concave.

3.6 Epigraph

Definition 3.6.1. Let f : domf ⊆ Rn → R. The set

epif = {(x, t) ⊆ R
n+1 |x ∈ domf, f(x) ≤ t}

is called the epigraph of f .

Theorem 3.6.1. Let f : domf ⊆ Rn → R. Function f is convex if, and only if, epif is

a convex set.
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Proof. (Direct). [We must prove that if f is a convex function, then epif is a convex set.]

We assume that f is convex. To prove that epif is a convex set, we need to prove that if

(x1, t1), (x2, t2) ∈ epif, 0 ≤ θ ≤ 1,

then

θ(x1, t1) + (1− θ)(x2, t2) = (θx1 + (1− θ)x2, θt1 + (1− θ)t2) ∈ epif.

Assume that (x1, t1), (x2, t2) ∈ epif , which implies that

x1,x2 ∈ domf, f(x1) ≤ t1, f(x2) ≤ t2. (3.9)

Since f is convex, we have, for 0 ≤ θ ≤ 1, θx1 + (1− θ)x2 ∈ domf and

f(θx1 + (1− θ)x2) ≤ θf(x1) + (1− θ)f(x2)

(3.9)

≤ θt1 + (1− θ)t2,

that is, θ(x1, t1) + (1− θ)(x2, t2) ∈ epif .

(Inverse). [We must prove that if epif is a convex set, then f is a convex function.]

We assume that the set epif is convex. We know that the projection of epif on its first

n coordinates is a convex set. Therefore, the set domf is convex.

In addition, if (x1, t1), (x2, t2) ∈ epif and 0 ≤ θ ≤ 1, then θ(x1, t1)+(1−θ)(x2, t2) ∈ epif .

We notice that we can set t1 = f(x1) and t2 = f(x2) (why?), taking that θ(x1, f(x1)) +

(1− θ)(x2, f(x2)) ∈ epif , that is,

f(θx1 + (1− θ)x2) ≤ θf(x1) + (1− θ)f(x2).

Thus, f is a convex function.

3.7 Function operations that preserve convexity

3.7.1 Non-negative weighted sums

Theorem 3.7.1. Let fk : Rn → R, for k = 1, . . . , K, be convex functions and wk ≥ 0, for

k = 1, . . . , K. Then, the function

f(x) =
K∑

k=1

wkfk(x)

is convex.
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Proof. From the convexity of fk, for k = 1, . . . , K, we have that, if x1,x2 ∈ Rn and

0 ≤ θ ≤ 1, then

fk(θx1 + (1− θ)x2) ≤ θfk(x1) + (1− θ)fk(x2), for k = 1, . . . , K.

Multiplying both sides of each inequality by wk, for k = 1, . . . , K, and summing, we get

K∑

k=1

wkfk(θx1 + (1− θ)x2) ≤
K∑

k=1

wk (θfk(x1) + (1− θ)fk(x2))

= θ

K∑

k=1

wkfk(x1) + (1− θ)

K∑

k=1

wkfk(x2),

which gives that

f(θx1 + (1− θ)x2) ≤ θf(x1) + (1− θ)f(x2).

3.7.2 Synthesis with affine function

Theorem 3.7.2. Let f : domf ⊆ Rn → R, A ∈ Rn×m, and b ∈ Rn. Let g : Rm → R,

with g(x) = f(Ax+b) and domain dom g = {x ∈ R
m |Ax+b ∈ dom f}. If f is a convex

function, then g is also convex. If f is a concave function, then g is also concave.

Proof. It is left to the reader.

3.7.3 Point maxima

Theorem 3.7.3. Let fk : Rn → R, for k = 1, . . . , K, be convex functions. Then, the

function

f(x) = max{f1(x), . . . , fK(x)}

is convex.

Proof. From the convexity of fk, for k = 1, . . . , K, we have that, if x1,x2 ∈ Rn and

0 ≤ θ ≤ 1, then

fk(θx1 + (1− θ)x2) ≤ θfk(x1) + (1− θ)fk(x2), for k = 1, . . . , K.
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Therefore,

max
k=1,...,K

{fk(θx1 + (1− θ)x2)} ≤ max
k=1,...,K

{θfk(x1) + (1− θ)fk(x2)}
(!)

≤ max
k=1,...,K

{θfk(x1)}+ max
k=1,...,K

{(1− θ)fk(x2)}

= θ max
k=1,...,K

{fk(x1)}+ (1− θ) max
k=1,...,K

{fk(x2)}

= θf(x1) + (1− θ)f(x2).

The only non-trivial inequality is (!) , which, essentially, is equivalent to the inequality

max
k=1,...,K

{ak + bk} ≤ max
k=1,...,K

{ak}+ max
k=1,...,K

{bk},

for any scalars ak, bk, for k = 1, . . . , K (try to prove this inequality).

3.7.4 Synthesis of functions

Let f, h : R → R and g(t) = (f ◦ h)(t). g is convex if, and only if, D2g(t) ≥ 0 for every

t ∈ domg.

We know that Dg(t) = Df(h(t))Dh(t) and

D2g(t) = D2f(h(t)) (Dh(t))2 +Df(h(t))D2h(t).

With appropriate choice of f and h, we can have D2g(t) ≥ 0 for each t ∈ domg.

For example, if f is convex and non-decreasing, which imply that Df(t) ≥ 0 and D2f(t) ≥
0, and h is convex, which implies that D2h(t) ≥ 0, then g is convex (why?).

For more examples, see pages 83–87 of Boyd–Vandenberghe.

3.7.5 Partial minimization

Theorem 3.7.4. Let f : Rn+m → R, x ∈ Rn and y ∈ Rm. Let f(x,y) be convex, with

respect to (x,y), and let C ⊆ R
m be a convex set. Then, g(x) = miny∈C f(x,y) is convex,

with respect to x, if g(x) > −∞ for every x in

dom g = {x | (x,y) ∈ domf for some y ∈ C},

and g(x) < ∞, for some x ∈ domg.
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Proof. We must prove that, if x1,x2 ∈ domg and 0 ≤ θ ≤ 1, then x = θx1 + (1 − θ)x2 ∈
domg and g(x) ≤ θg(x1) + (1− θ)g(x2).

For each ǫ > 0, we can find y1 and y2 such that

(x1,y1), (x2,y2) ∈ domf

g(x1) + ǫ ≥ f(x1,y1), g(x2) + ǫ ≥ f(x2,y2).

Multiplying the first inequality by θ and the second with (1− θ) and adding, we obtain

θg(x1) + (1− θ)g(x2) + ǫ ≥ θf(x1,y1) + (1− θ)f(x2,y2)

≥ f(θx1 + (1− θ)x2, θy1 + (1− θ)y2)

= f(x, θy1 + (1− θ)y2)

≥ g(x).

(3.10)

Therefore, x ∈ domg and, since the inequality holds for every ǫ > 0, we have that

g(x) ≤ θg(x1) + (1− θ)g(x2). Therefore, g is a convex function (see, OPTIII, p. 68).

Appendix

Sketch of proof of Theorem 3.1.1, assuming f : Rn → R. (Work out the details for

f : domf ⊆ Rn → R, with domf a convex set).

Let f : Rn → R, x,y ∈ Rn, and gx,y : R → R, with gx,y(t) = f(tx + (1− t)y). Hereafter,

to simplify the notation, gx,y will be denoted as g.

Direct: If f is a convex function, then g is a convex function.

If f : Rn → R is a convex function and x,y ∈ Rn, then gx,y : R → R, with gx,y(t) =

f(tx+ (1− t)y), is a convex function.

To prove that g is a convex function, we must prove that, for every t1, t2 ∈ R and 0 ≤ λ ≤ 1,

it must be true that

g(λt1 + (1− λ)t2) ≤ λg(t1) + (1− λ)g(t2). (3.11)

Equivalently, we must prove that

f ((λt1 + (1− λ)t2)x + (1− (λt1 + (1− λ)t2))y) ≤
λf (t1x+ (1− t1)y) + (1− λ)f (t2x+ (1− t2)y) .

(3.12)
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After simple algebraic operations, we get

(λt1 + (1− λ)t2)x+ (1− (λt1 + (1− λ)t2))y =

λ (t1x+ (1− t1)y) + (1− λ) (t2x + (1− t2)y) .
(3.13)

Therefore, (3.12) is equivalently written as

f (λ (t1x+ (1− t1)y) + (1− λ) (t2x + (1− t2)y)) ≤
λf (t1x+ (1− t1)y) + (1− λ)f (t2x+ (1− t2)y) ,

(3.14)

which is true, because we have assumed that f is a convex function.

Inverse: If g is a convex function, then f is a convex function.

We must prove that, if x,y ∈ Rn and 0 ≤ λ ≤ 1, then

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y). (3.15)

From the definition of g, we have

g(λ) = f(λx+ (1− λ)y), g(1) = f(x), g(0) = f(y). (3.16)

From the convexity of g, we get

g(λ) = g(λ · 1 + (1− λ) · 0) ≤ λg(1) + (1− λ)g(0), (3.17)

which is equivalent to (3.15), completing the proof.
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Convex Optimization Problems

4.1 Optimization Problems

Definition 4.1.1. An optimization problem is defined as

minimize f0(x)

subject to fi(x) ≤ 0, i = 1, . . . , m,

hi(x) = 0, i = 1, . . . , p,

(4.1)

where

1. the vector x ∈ Rn is called optimization variable,

2. the function f0 : dom f0 ⊆ R
n → R is called cost function,

3. the inequalities fi(x) ≤ 0, with fi : dom fi ⊆ Rn → R, for i = 1, . . . , m, are called

inequality constraints, and

4. the equalities hi(x) = 0, with hi : dom hi ⊆ R
n → R, for i = 1, . . . , p, are called

equality constraints.

The set of points for which all functions are defined is

D :=

m⋂

i=0

dom fi ∩
p⋂

i=1

dom hi. (4.2)

Definition 4.1.2. A point x ∈ D is called feasible if it satisfies all constraints.

An optimization problem is called feasible if there exists a feasible point for that problem.

Otherwise, it is called infeasible.

49
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The set of feasible points of an optimizaion problem is called feasible set of the problem.

The feasible set of the optimization problem (4.1) is the set

X := {x ∈ D | fi(x) ≤ 0, i = 1, . . . , m, hi(x) = 0, i = 1, . . . , p}. (4.3)

The optimal value of the problem (4.1) is defined as

p∗ = inf {f0(x) |x ∈ X} . (4.4)

p∗ can take the values ±∞. If the problem is infeasible, then p∗ = ∞. If there are feasible

points xk ∈ D, with f0(xk) → −∞, when k → ∞, then p∗ = −∞ and the problem is called

unbounded from below.

4.1.1 Local and Global Minima

Definition 4.1.3. A point x∗ ∈ X is called optimal point if f0(x∗) = p∗. The set

Xopt = {x ∈ X | f(x) = p∗} (4.5)

is called optimal set.

Alternatively, we say that x ∈ X is an optimal point if f0(x) ≤ f0(y) for every y ∈ X.

If there is an optimal point for the problem (4.1), then we say that the problem has a

solution and the optimal value is attained.

If the set Xopt is empty, then we say that the optimal value is not attained (this is always

the case when the problem is unbounded from below).

Definition 4.1.4. The point x ∈ X is called locally optimal if there exists ǫ > 0 such

that f0(x) ≤ f0(y) for every y ∈ X, with ‖y − x‖2 < ǫ.

If x ∈ X and fi(x) = 0, for some i in the set {1, . . . , m}, then we say that the i-th inequality

constraint is active at x. On the other hand, if fi(x) < 0, for some i in the set {1, . . . , m},
then we say that the i-th inequality constraint is inactive at x.

A constraint is called redundant if its deletion does not change the feasible set.
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4.2 Convex Optimization Problems

Definition 4.2.1. A problem of the form

minimize f0(x)

subject to fi(x) ≤ 0, i = 1, . . . , m

aT
i x = bi, i = 1, . . . , p,

(4.6)

is called convex optimization problem if the functions fi, for i = 0, . . . , m, are convex.

The feasible set of the optimization problem (4.6) is

X := {x ∈ D | fi(x) ≤ 0, i = 1, . . . , m, aT
i x = bi, i = 1, . . . , p}. (4.7)

Theorem 4.2.1. The feasible set of a convex optimization problem is convex.

Proof. The feasible set of a convex optimization problem is the intersection of the (con-

vex) domains of the functions fi, for i = 0, . . . , m, the (convex) 0-sublevel sets {x ∈
domfi | fi(x) ≤ 0}, for i = 1, . . . , m, and the hyperplanes {x ∈ Rn | aT

i x = bi}, for

i = 1, . . . , p. Therefore, it is convex.

Theorem 4.2.2. Consider the convex optimization problem (4.6). Then, the set of points

x ∈ X which minimize f0 is convex. Moreover, every local minimum of f0 is a global

minimum.

Proof. Assume that the problem has a solution p∗. Then, the set of optimal points is the

convex p∗-sublevel set Cp∗ := {x ∈ X | f0(x) ≤ p∗}.

(We shall prove the second statement by Reductio ad Absurdum). Let x ∈ X be a local

but not global minimum of f0. Then, there exists y ∈ X such that f0(y) < f0(x). If we

consider f0 on the line segment θy + (1− θ)x, with 0 ≤ θ ≤ 1, we have

f0(θy + (1− θ)x) ≤ θf0(y) + (1− θ)f0(x) < f0(x), (4.8)

from which we conclude that x is not a local minimum (why?). This is false and the proof

is complete.
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X

x
y

∇f(x)

Figure 4.1: Geometric interpretation of the optimality condition (4.10).

4.3 An Optimality Criterion for Differentiable Cost

Functions

Let f0 : dom f0 ⊆ Rn → R convex and differentiable function. We know that, for every

x,y ∈ dom f0, the following inequality holds:

f0(y) ≥ f0(x) +∇f0(x)
T (y − x). (4.9)

Theorem 4.3.1. Let X = {x ∈ D | fi(x) ≤ 0, i = 1, . . . , m, aT
i x = bi, i = 1, . . . , p}. The

point x ∈ X is optimal for the convex optimization problem (4.6) if, and only if,

∇f0(x)
T (y − x) ≥ 0, for every y ∈ X. (4.10)

Proof. (Direct, through reductio ad absurdum) Assume that x ∈ X is optimal but there

exists a point y ∈ X such that ∇f0(x)
T (y − x) < 0. If we define, for 0 ≤ θ ≤ 1,

z(θ) := θy + (1− θ)x = x+ θ(y − x), (4.11)

we have that z(θ) ∈ X, for every 0 ≤ θ ≤ 1. For small and positive θ, we should have

f0(z(θ)) < f0(x) because

d

dθ
f0(z(θ))

∣∣∣∣
θ=0

= ∇f0(x)
T (y − x) < 0. (4.12)

Therefore, x is not optimal, which is false.

(Inverse) If (4.10) holds, then, due to (4.9), we have that

f0(y) ≥ f0(x), for each y ∈ X, (4.13)

that is, x is an optimal point for the problem (4.6).

The proof is complete.
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4.3.1 Unconstrained Problems

Theorem 4.3.2. Let f0 : R
n → R be a convex differentiable function. The point x ∈ Rn

is an optimal point for the unconstrained minimization problem if, and only if,

∇f0(x) = 0. (4.14)

Proof. By Theorem 4.3.1, we should have

∇f0(x)
Th ≥ 0, for every h ∈ R

n. (4.15)

This means that ∇f0(x) = 0. Because, if ∇f0(x) 6= 0 and we choose h = −∇f0(x), we get

that

−‖∇f0(x)‖22 ≥ 0, (4.16)

which is false.

4.3.2 Problems with linear constraints

Consider the problem

minimize f0(x)

subject to Ax = b.
(4.17)

The point x∗ ∈ X is optimal if

∇f0(x∗)
T (y− x∗) ≥ 0, (4.18)

for every y, with Ay = b.

4.3.3 Optimization in non-negative orthant

Let the problem

minimize f0(x)

subject to x � 0.
(4.19)

The point x∗ � 0 is optimal if

∇f0(x∗)
T (y− x∗) ≥ 0, for every y � 0. (4.20)
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4.4 Equivalent problems

In simple words, we would say that two optimization problems are equivalent when “from

the solution of one we can compute the solution of the other.”

Example. The problem

minimize f0(x)

subject to ‖Ax− b‖2 ≤ r,
(4.21)

is equivalent to the problem

minimize f0(x)

subject to ‖Ax− b‖22 ≤ r2.
(4.22)

Obviously, the two problems have the same solution. But the constraint of the first problem

refers to a nondifferentiable function, while the corresponding function for the second

problem is differentiable.

More complex (and more interesting) examples of equivalent problems will be mentioned

later in the course.

4.4.1 Epigraph Form

The problem

minimize
x,t

t

subject to f0(x)− t ≤ 0

fi(x) ≤ 0, i = 1 . . . , m,

Ax = b

(4.23)

is equivalent to the problem (4.6) and is called optimization problem in epigraph form.

4.5 Linear optimization problems

The optimization problem with linear cost function and affine equality and inequality

constraints

minimize cTx

subject to Gx � h

Ax = b

(4.24)
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cTx = p∗cTx = c1

c

Ax ≤ b

Figure 4.2: Linear optimization problem in inequality form.

is called a linear programming problem or linear program (see Fig. 4.2). Two forms

of linear programs are very common.

The standard form, in which the problem is expressed as

minimize cTx

subject to Ax = b

x � 0

(4.25)

and the inequality form, in which the problem is expressed as

minimize cTx

subject to Ax � b.
(4.26)

It can be proved that any linear program can be expressed in standard or inequality form

(via slack variables).

4.6 Quadratic optimization problems

The optimization problem

minimize 1
2
xTPx+ qTx+ r

subject to Gx � h

Ax = b,

(4.27)

is called quadratic optimization problem. The problem is convex if P � O.
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f0(x) = c1

f0(x) = p∗

Ax ≤ b

Figure 4.3: Convex quadratic optimization problem.

f0(x) = c1

f0(x) = p∗

f1(x) ≤ 0

Figure 4.4: Convex quadratic optimization problem with a convex quadratic constraint.

The optimization problem

minimize 1
2
xTP0x+ qT

0 x+ r0

subject to 1
2
xTPix+ qT

i x + ri ≤ 0, i = 1, . . . , m

Ax = b,

(4.28)

is called quadratic optimization problem with quadratic constraints. The problem

is convex if Pi � O, for i = 0, . . . , m.

4.6.1 Least Squares

The optimization problem

min
x

‖Ax− b‖22 (4.29)
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is called linear least-squares problem.

The optimization problem

min
x

‖Ax− b‖22
subject to li ≤ xi ≤ ui, i = 1, . . . , n,

(4.30)

is called linear least squares problem with box constraints.

Appendix

Let a ∈ R. We recall that f(x) = O(g(x)), for x → a, if there are constants δ > 0 and

K := K(a, δ) > 0 or K := K(δ) > 0 such that

|f(x)| ≤ K|g(x)|, for each x ∈ R, with |x− a| < δ. (4.31)

Theorem 4.6.1. Let f : Rn → R be a differentiable function and x,∆x ∈ Rn such that

∇f(x)T∆x < 0. Then, for 0 < t ∈ R sufficiently small, we have that f(x+ t∆x) < f(x).

Proof. From the first-order Taylor expansion and the definition of the O(t2) expression, we

have, for sufficiently small t, i.e., 0 < t < t0, that

f(x+ t∆x) = f(x) + t∇f(x)T∆x+O(t2)

≤ f(x) + t∇f(x)T∆x +Kt0t
2,

(4.32)

with Kt0 ∈ R++. If

t∇f(x)T∆x +Kt0t
2 < 0, (4.33)

then f(x+ t∆x) < f(x). The inequality (4.33) is true for

t < − 1

Kt0

∇f(x)T∆x, (4.34)

completing the proof.

Alternatively

f(x+ t∆x) = f(x) + t∇f(x)T∆x +
t2

2
∆xT∇2f(w)∆x, (4.35)

with w = θx+ (1− θ)(x+ t∆x), for some θ ∈ [0, 1]. If we put

z(θ) = ∆xT∇2f(θx+ (1− θ)(x+ t∆x))∆x (4.36)

and define z∗ = maxθ∈[0,1] z(θ), then we have

f(x+ t∆x) ≤ f(x) + t∇f(x)T∆x +
t2

2
z∗. (4.37)

The rest of the proof is the same as in the original proof, with Kt0 =
z∗

2
.
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Chapter 5

Unconstrained convex optimization

5.1 Unconstrained convex optimization problems

The problem we shall study in this chapter is the unconstrained convex optimization prob-

lem

min
x

f(x), (5.1)

where f : Rn → R is a doubly differentiable convex real function.

We assume that the problem (5.1) has a solution and that the minimum value of f equals

p∗. Therefore, there exists x∗ ∈ Rn such that f(x∗) = p∗.

As we have seen, a point x∗ ∈ Rn is a solution of the problem (5.1) if, and only if,

∇f(x∗) = 0. (5.2)

The relation (5.2) is a system of (usually, non-linear) equations, which rarely has a closed

form solution, and which is usually solved through iterative procedures.

An iterative procedure for solving (5.2) is a procedure which generates a sequence of points

xk ∈ Rn such that xk → x∗, when k → ∞.

The system (5.2) can be solved through direct or indirect iterative procedures.

A direct iterative process tries to compute x∗ by solving the system (5.2), while an indirect

one tries to take advantage of properties of f and compute x∗ indirectly.

59
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5.2 Starting point and sublevel sets

The methods we will present start from an initial point x0 which belongs to dom f and

for which it should hold that the set

S = {x | f(x) ≤ f(x0)} (5.3)

is closed.1

This condition is satisfied if x0 ∈ dom f and f is a closed function, that is, when all

sublevel sets of f are closed sets.

Two important cases of closed functions are as follows:

1. continuous functions f with domain dom f = R
n are closed. For example, the

function f : Rn → R with formula

f(x) =
1

2
xTPx+ qTx+ c, (5.4)

with P = PT ≻ 0, is closed.

2. continuous functions with domain dom f open set, for which function f(x) tends

to infinity when x approaches bddom f , are closed. For example, the function

f : dom f ⊆ R
n → R defined as

f(x) = −
m∑

i=1

log(bi − aT
i x). (5.5)

The domain of f is the set

dom f = {x ∈ R
n | aT

i x < bi, i = 1, . . . , m}. (5.6)

Notice that, as x approaches the boundary of the domain, the function f tends to

infinity.

5.3 Descent Methods

The first method we will study is an indirect iterative process to solve (5.1) or, equivalently,

(5.2) and is described as follows.

1This guarantees that limits of sequences of points xk ∈ S, for k = 1, 2, . . . , will be points of S.
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Suppose that, at the k-th step of the process, our estimate of the solution of (5.2) is the

point xk, with ∇f(xk) 6= 0.

The next point is given by the relation

xk+1 = xk + tk∆xk, (5.7)

for suitably chosen tk > 0 and ∆xk.

It seems reasonable to choose tk and ∆xk such that

f(xk+1) ≤ f(xk), (5.8)

with equality only if xk = x∗. Such iterative methods are called descent methods.

Due to the convexity of f , we know that if ∇f(xk)
T (xk+1−xk) ≥ 0, then f(xk+1) ≥ f(xk).

Therefore, in order to develop a descent method, we must choose ∆xk such that

∇f(xk)
T∆xk < 0, (5.9)

that is, cos∠ (∆xk,∇f(xk)) < 0. Such a direction of movement is called descent direc-

tion. In this case, tk is chosen as

tk = argmin
t>0

f(xk + t∆xk). (5.10)

5.4 Gradient Method

Among the most common choices for ∆xk is to set

∆xk = −∇f(xk). (5.11)

This direction is called negative gradient direction. If ∇f(xk) 6= 0, then the choice

(5.11) satisfies relation (5.9). Geometrically, we move from the point xk along the direction

which leads to the maximum rate of decrease of f .

In Table 5.1, we present the gradient algorithm. Usually, for reasons we will explain later,

as a termination criterion we set ‖∇f(xk)‖2 < ǫ, for some “small” ǫ > 0.

5.4.1 Line Search

As we have seen, for a given descent direction ∆xk, the line search problem is expressed as

tk = argmin
t>0

f(xk + t∆xk). (5.12)
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x0 ∈ Rn, k = 0.

While (stopping criterion is FALSE)

1. ∆xk := −∇f(xk).

2. Line search and choose tk.

3. xk+1 = xk + tk∆xk.

4. k := k + 1.

Table 5.1: Rank Algorithm.

5.4.2 Exact line search

When the solution of the problem (5.12) is expressed in closed form or is relatively easy to

compute accurately, then we adopt the exact line search method to compute tk.

Example 5.4.1. Exact line search for convex quadratic cost function and negative gradient

direction.

Let the quadratic cost function f : Rn → R, with

f(x) =
1

2
xTPx+ qTx, (5.13)

with P ∈ Rn×n, P = PT ≻ O, and q ∈ Rn.

As we have shown, the gradient of the function f is equal to

∇f(x) = Px+ q. (5.14)

To solve the exact line search problem, we assume that ∇f(x) 6= 0, we define the function

g(t) := f (x− t∇f(x)) , (5.15)

and we look for

t∗ = argmin
t≥0

g(t). (5.16)

The function g is expressed as follows:

g(t) =
1

2
(x− t∇f(x))T P (x− t∇f(x)) + qT (x− t∇f(x))

=
1

2
t2∇f(x)TP∇f(x)− t(Px+ q)T∇f(x) +

1

2
xTPx+ qTx

=
1

2
t2∇f(x)TP∇f(x)− t‖∇f(x)‖2 + 1

2
xTPx+ qTx

=
1

2
at2 − bt+ c,

(5.17)
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with a := ∇f(x)TP∇f(x) > 0, b := ‖∇f(x)‖2, and c := 1
2
xTPx + qTx. The derivative

of g is
dg(t)

dt
= at− b. (5.18)

The minimum of g(t) is attained at the solution of the equation dg(t)
dt

= 0, that is

t∗ =
b

a
=

‖∇f(x)‖2
∇f(x)TP∇f(x)

> 0. (5.19)

So, in this case, there is a closed form solution to the exact line search problem. �

5.4.3 Backtracking line search

In many cases, solving the problem (5.12) is difficult. In these cases, we can adopt inexact

line search techniques (note that there are many such techniques).

A common inexact line search technique is the backtracking line search. For x ∈ domf ,

the backtracking line search takes as input a descent direction, ∆x, and returns a value

t > 0 such that the value f(x+ t∆x) is “sufficiently” smaller than f(x).

The method uses parameters α and β, with 0 < α < 0.5 and 0 < β < 1, and is described

in Table 5.4.3. It starts by setting t = 1, and decreases t by a multiplicative factor β until

f(x+ t∆x) ≤ f(x) + αt∇f(x)T∆x. (5.20)

1. It can be shown that the condition (5.20) is satisfied for sufficiently small t, therefore,

the backtracking line search algorithm terminates always.

The proof is based on (1) the first-order Taylor expansion and (2) the fact that the

vector ∆x is a descent direction, that is, ∇f(x)T∆x < 0.

More specifically, from the first-order Taylor expansion, we have that, for sufficiently

small t,

f(x+ t∆x) ≈ f(x) + t∇f(x)T∆x < f(x) + αt∇f(x)T∆x. (5.21)

2. The first-order Taylor estimate of the decrease of the value of f is equal to

f(x)− f(x+ t∆x) = −t∇f(x)T∆x. (5.22)

Therefore, the backtracking line search algorithm terminates when the decrease of f

is at least −αt∇f(x)T∆x, that is, at least α times the first-order Taylor estimate of

the decrease (see Figure 5.1).
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f(x) + αt∇f(x)T∆x

f(x+ t∆x)

t0

f(x) + t∇f(x)T∆x

t

Figure 5.1: Search line with backspace.

Let ∆x be descent direction at x, α ∈ (0, 0.5), β ∈ (0, 1).

t := 1.

While
(
f(x+ t∆x) > f(x) + αt∇f(x)T∆x

)

1. t := βt.

Table 5.2: Backtracking line search.

5.5 Convergence Analysis for Strongly Convex Func-

tions

Convergence analysis of methods for solving optimization problems is extremely important

because it provides information about the speed of convergence of the methods.

Additional features of the method, such as, for example, the computational complexity of

each step of the method, complete the picture of the method.

Convergence analysis is usually accompanied by assumptions about the nature of the op-

timization problem, for example, assumptions about differentiability, strict or strong con-

vexity of the cost function, etc.

In the sequel, we will study the convergence of the gradient method, assuming that the

cost function is strongly convex.

Let f : Rn → R be a strongly convex doubly differentiable function. More specifically,

we assume that there exist 0 < m ≤ M < ∞ such that

mI � ∇2f(x) � MI, for every x ∈ S, (5.23)

where I is the (n× n) identity matrix and S := {x ∈ Rn | f(x) ≤ f(x0)}.
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In practice, usually, the constants m and M are unknown. But, the assumption of their

existence allows convergence analysis of the gradient algorithm and leads to extremely

important conclusions. For this reason, in what follows, we will assume the existence of

these constants.

Relation (5.23) implies that, for any x ∈ S and y ∈ Rn,

myT Iy ≤ yT∇2f(x)y ≤ MyT Iy, (5.24)

or, equivalently,

m‖y‖22 ≤ yT∇2f(x)y ≤ M‖y‖22. (5.25)

Before proceeding, we mention that (5.23) is equivalent to

1

M
I �

(
∇2f(x)

)−1 � 1

m
I, for any x ∈ S. (5.26)

We recall that, for any x,y ∈ S,

f(y) = f(x) +∇f(x)T (y − x) +
1

2
(y − x)T∇2f(z)(y− x), (5.27)

for some z on the line segment that connects the points x and y.

Using (5.25), we can prove the inequalities, for any x,y ∈ S:

f(y) ≥ f(x) +∇f(x)T (y − x) +
m

2
‖y− x‖22 (5.28)

and

f(y) ≤ f(x) +∇f(x)T (y − x) +
M

2
‖y − x‖22, (5.29)

which will prove extremely useful in the sequel.

Their usefulness basically stems from the fact that, for a given x, the expressions on the

right-hand sides of (5.28) and (5.29) are quadratic functions of y which provide, respec-

tively, a global underestimator and a global overestimator of f , in the set S.

Another inequality which will be useful later is

p∗ ≥ f(x)− 1

2m
‖∇f(x)‖22, (5.30)

which holds for every x ∈ S. The proof is based on (5.28) and is as follows. For a

given x, the right-hand side of (5.28) is a quadratic function of y, with minimum value

f(x)− 1
2m

‖∇f(x)‖22 (prove it). Hence, by (5.28), we have the inequality (why?)

min
y∈S

f(y) ≥ min
y∈S

(
f(x) +∇f(x)T (y− x) +

m

2
‖y − x‖22

)
, (5.31)
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Figure 5.2: Quadratic total overestimator and underestimator of f(x) = − log(x), in the

interval x ∈ [0.1, 0.4], at the point x0 = 0.2.

which implies (5.30).

An interesting interpretation of (5.30) is as follows. If, for some x ∈ S, we have that the

value ‖∇f(x)‖2 is “small,” then the value of f(x) is “close” to the optimal value, p∗. This

interpretation offers a terminating condition of the gradient algorithm, for example, the

condition ‖∇f(x)‖2 < ǫ, for a “small” positive ǫ.

Finally, using (5.28), it can be shown that, for every x ∈ S,

‖x− x∗‖2 ≤
2

m
‖∇f(x)‖2 . (5.32)

The proof is as follows. Setting y = x∗ in (5.28), we get

p∗ = f(x∗) ≥ f(x) +∇f(x)T (x∗ − x) +
m

2
‖x∗ − x‖22

≥ f(x)− ‖∇f(x)‖2‖x∗ − x‖2 +
m

2
‖x∗ − x‖22,

(5.33)

where, in the second line, we used the Cauchy-Schwarz inequality. Since p∗ ≤ f(x), we

have
m

2
‖x∗ − x‖22 − ‖∇f(x)‖2‖x∗ − x‖2 ≤ p∗ − f(x) ≤ 0, (5.34)

from which we get (5.32). This inequality states that, if for some x we have that the value

‖∇f(x)‖2 is “small,” then x is “close” to the optimal point x∗. Therefore, we have another
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argument for using the quantity ‖∇f(x)‖2 as a terminating criterion for the gradient

algorithm.

During the analysis and in order to simplify notation, we will use expression x+ = x+ t∆x

instead of the expression xk+1 = xk + tk∆xk.

5.5.1 Exact line search

In this subsection, we will study the convergence speed of the gradient method with exact

line search.

We define f̃ : R → R, with f̃(t) = f(x − t∇f(x)). From (5.29), for y = x − t∇f(x), we

get

f̃(t) ≤ f(x)− t‖∇f(x)‖22 +
Mt2

2
‖∇f(x)‖22. (5.35)

Next, we apply exact line search and minimize, with respect to t, both sides of (5.35).

The optimal value of the left side equals f̃(texact). The right-hand side is a quadratic

function of t, which is minimized for t = 1
M
, and has minimum value equal to f(x) −

1
2M

‖∇f(x)‖22 (prove it). Therefore,

f(x+) := f̃(texact) ≤ f(x)− 1

2M
‖∇f(x)‖22. (5.36)

Subtracting p∗ from both sides, we get

f(x+)− p∗ ≤ f(x)− p∗ −
1

2M
‖∇f(x)‖22. (5.37)

From (5.30), we get

‖∇f(x)‖22 ≥ 2m(f(x)− p∗) ⇒ − 1

2M
‖∇f(x‖22 ≤ −m

M
(f(x)− p∗). (5.38)

Combining (5.37) and (5.38), we get

f(x+)− p∗ ≤
(
1− m

M

)
(f(x)− p∗). (5.39)

Defining

c := 1− m

M
, (5.40)

and applying the above inequality recursively, we obtain

f(xk)− p∗ ≤ ck(f(x0)− p∗). (5.41)
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We observe that 0 ≤ c < 1. Therefore, the above relation proves that f(xk) → p∗, when

k → ∞.

In particular, in order to derive a sufficient condition ensuring that we have achieved

accuracy ǫ > 0, we work as follows. Let

ck(f(x0)− p∗) ≤ ǫ. (5.42)

Then

f(x0)− p∗
ǫ

≤ 1

ck
=

(
1

c

)k

⇐⇒ log

(
f(x0)− p∗

ǫ

)
≤ k log

(
1

c

)

⇐⇒ k ≥
log
(

f(x0)−p∗
ǫ

)

log
(
1
c

) .

(5.43)

Considering (5.41), we conclude that if

k ≥ kǫ :=
log
(

f(x0)−p∗
ǫ

)

log
(
1
c

) , (5.44)

then f(xk)− p∗ ≤ ǫ.

We define as condition number of the problem the quantity

K :=
M

m
. (5.45)

For large K, we have that2

log

(
1

c

)
= − log

(
1− m

M

)
≈ m

M
=

1

K . (5.46)

In this case,

kǫ ≈ K log

(
f(x0)− p∗

ǫ

)
, (5.47)

that is, the maximum required number of iterations to get ǫ-close to the optimal p∗ value

increases linearly with the condition number of the problem. Moreover, it depends loga-

rithmically on the starting point, x0, and on the accuracy, ǫ.

Another interpretation of (5.47) is as follows: to increase the accuracy of the solution ǫ by

one decimal point, we must perform additional (at most) O(1)K iterations (why?).

2Recall that log(1− x) = −x+O(x2).
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5.5.2 Another interpretation of the gradient descent method

Suppose that we are at the point xk. The second-order Taylor approximation of f around

xk is as follows:

f(x) ≈ f(xk) +∇f(xk)
T (x− xk) +

1

2
(x− xk)

T∇2f(xk)(x− xk). (5.48)

If, in the above relationship, instead of the Hessian ∇2f(xk) we put the matrix 1
t
I, we get

f(x) ≈ f(xk) +∇f(xk)
T (x− xk) +

1

2t
‖x− xk‖22 =: g(x). (5.49)

Function g(x) is a quadratic convex function of x, with derivative

∇g(x) =
1

t
(x− xk) +∇f(xk). (5.50)

The point, x∗, which minimizes the function g(x) is

∇g(x∗) = 0 ⇒ x∗ = xk − t∇f(xk). (5.51)

Therefore, the iteration of the gradient descent method at the point xk can be interpreted

as the optimization of a simple quadratic approximation of f around the point xk. The

smaller t is, the larger the contribution of the second-order term, which means that the

optimal point will be near xk.

5.6 Newton method

Next, we describe an extremely important method for solving systems of nonlinear equa-

tions and optimization problems, the Newton method.

5.6.1 Newton step

The direction of movement

∆xNt = −
(
∇2f(x)

)−1∇f(x) (5.52)

is called Newton step.

If ∇2f(x) ≻ O, then

∇f(x)T∆xNt = −∇f(x)T
(
∇2f(x)

)−1∇f(x) ≤ 0, (5.53)
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Figure 5.3: Function f(x) = x−1 and second-order Taylor approximation at the point

x = 0.3.

with equality if, and only if, ∇f(x) = 0. Thus, the Newton step is a descent direction of

f at the point x.

The Newton step can be interpreted as follows.

1. Second-order approximation minimization. The second-order Taylor approximation

of f at the point x is given by the relation

f̂x(y) = f(x) +∇f(x)T (y− x) +
1

2
(y− x)T∇2f(x)(y− x). (5.54)

This quadratic function is minimized at y = x+∆xNt (see Figure 5.3) (prove it).

2. Method of steepest descent, in terms of the Hessian norm. The Newton step is the

direction of steepest descent of f at x for the norm

‖u‖∇2f(x) =
(
uT∇2f(x)u

) 1

2 . (5.55)

3. Solution of a linearized optimality condition. The linear approximation of the equa-

tion ∇f(x∗) = 0, around point x, gives

∇f(x+ v) ≈ ∇f(x) +∇2f(x)v = 0, (5.56)

which gives v = − (∇2f(x))
−1∇f(x).



5.6. NEWTON METHOD 71

x ∈ Rn, ǫ > 0.

While (TRUE)

1. ∆xNt := − (∇2f(x))
−1∇f(x).

2. λ2 := ∇f(x)T (∇2f(x))
−1∇f(x).

3. quit if λ2

2
≤ ǫ.

4. Perform backtracking line search and compute t.

5. x := x + t∆xNt.

Table 5.3: Newton method.

We present the Newton method in Table 5.3.

5.6.2 Newton decrement

The quantity

λ(x) :=
(
∇f(x)T

(
∇2f(x)

)−1∇f(x)
) 1

2

(5.57)

is called Newton decrement. It plays an important role in the analysis of the Newton

method and can be used in the terminating condition of the algorithm.

If f̂x(y) is the second-order approximation of f , at the point x, that is,

f̂x(y) = f(x) +∇f(x)T (y− x) +
1

2
(y− x)T∇2f(x)(y− x), (5.58)

then

f(x)− inf
y
f̂x(y) = f(x)− f̂x(x+∆xNt)

= −∇f(x)T∆xNt −
1

2
∆xT

Nt∇2f(x)∆xNt

= ∇f(x)T
(
∇2f(x)

)−1∇f(x)− 1

2
∇f(x)T

(
∇2f(x)

)−1∇f(x)

=
1

2
λ2(x).

(5.59)

That is, the quantity λ2(x)
2

is an estimate of the quantity f(x)−p∗, based on the quadratic

approximation of f at the point x.

In addition, the Newton decrement appears in backtracking line search because

−λ2(x) = ∇f(x)T∆xNt =
d

dt
f(x+ t∆xNt)

∣∣∣∣
t=0

. (5.60)
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5.6.3 Local convergence of the Newton algorithm

In this subsection, we will study the convergence of the Newton algorithm assuming it

starts from a point that is close enough to the optimal point.

The result we will prove states that, locally, the algorithm Newton has quadratic conver-

gence.

In practice, this means that, if we start from a point which is sufficiently close to the

solution, then the number of digits of the solution’s accuracy is doubled at each iteration.

A full analysis of the convergence of the Newton algorithm is given in the Appendix of the

chapter.

Technical background

Before proceeding to the analysis of the Newton algorithm, we introduce some notation

which we will use next.

Let g = (g1, . . . , gn) : R → Rn. We define

∫ b

a

g(t)dt :=




∫ b

a
g1(t)dt
...∫ b

a
gn(t)dt


 . (5.61)

If A : R → Rm×n, then we define

∫ b

a

A(t)g(t)dt :=




∫ b

a
aT
1 (t)g(t)dt

...∫ b

a
aT
m(t)g(t)dt


 =




∑n

i=1

∫ b

a
a1,i(t)gi(t)dt
...∑n

i=1

∫ b

a
am,i(t)gi(t)dt


 . (5.62)

Furthermore, notice that we can write

c =

∫ 1

0

c dt, Ac =

∫ 1

0

Ac dt. (5.63)

We define the norm
∥∥∥∥
∫ b

a

g(t)dt

∥∥∥∥
2

=

√√√√
n∑

i=1

(∫ b

a

gi(t)dt

)2

. (5.64)

The following inequalities will be useful later
∥∥∥∥
∫ b

a

A(t)g(t)dt

∥∥∥∥
2

≤
∫ b

a

‖A(t)g(t)‖2dt ≤
∫ b

a

‖A(t)‖2‖g(t)‖2dt. (5.65)
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The left inequality is a generalization of the triangle inequality, while the right inequality

results from an application of the relationship

‖Ag‖2 ≤ ‖A‖2‖g‖2, for A ∈ R
m×n, g ∈ R

n. (5.66)

At this point, we have all the technical tools at our disposal to proceed with the local

convergence analysis of the Newton algorithm.

Theorem 5.6.1. Let f : Rn → R be doubly continuously differentiable. Let us assume

that

1. ∃m > 0 such that ∇2f(x) � mI, for every x ∈ Rn. Notice that this assumption leads

to the inequality
(
∇2f(x)

)−1 � 1

m
I, for any x ∈ R

n.

2. ∃L > 0 such that ‖∇2f(x)−∇2f(y)‖2 ≤ L‖x− y‖2, for any x,y ∈ Rn.

Let {xk} be the sequence produced by the Newton method and x∗ the optimal point.

Then, for k = 0, 1, . . ., the following inequality holds true

‖xk+1 − x∗‖2 ≤
L

2m
‖xk − x∗‖22. (5.67)

Moreover, if ‖x0 − x∗‖2 ≤ m
L
, then, for k = 0, 1, . . ., we have that

‖xk − x∗‖2 ≤
2m

L

(
1

2

)2k

. (5.68)

Proof. We study the algorithm with tk = 1. From the definition of the algorithm, we have

xk+1 − x∗ = xk −
(
∇2f(xk)

)−1∇f(xk)− x∗
∇f(x∗)=0

= xk − x∗ +
(
∇2f(xk)

)−1
(∇f(x∗)−∇f(xk))

(!!)
= xk − x∗ +

(
∇2f(xk)

)−1
∫ 1

0

∇2f(xk + t(x∗ − xk))(x∗ − xk)dt

=
(
∇2f(xk)

)−1
∫ 1

0

[
∇2f(xk + t(x∗ − xk))−∇2f(xk)

]
(x∗ − xk)dt,

(5.69)

where at point (!!) we worked as follows. We define the function g : R → R
n, with

g(t) := ∇f(xk + t(x∗ − xk)).
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If Dg is the derivative of g (note that Dg : R → Rn), then

g(1)− g(0) =

∫ 1

0

Dg(t)dt. (5.70)

Using the chain rule, we get

Dg(t) = D∇f(xk + t(x∗ − xk))

= ∇2f(xk + t(x∗ − xk))D(xk + t(x∗ − xk))

= ∇2f(xk + t(x∗ − xk))(x∗ − xk).

(5.71)

Therefore, (5.70) is written as

∇f(x∗)−∇f(xk) =

∫ 1

0

∇2f(xk + t(x∗ − xk))(x∗ − xk)dt. (5.72)

This relationship was used at point (!!).

From (5.69), we get

‖xk+1 − x∗‖2
≤ ‖

(
∇2f(xk)

)−1 ‖2∥∥∥∥
∫ 1

0

[
∇2f(xk + t(x∗ − xk))−∇2f(xk)

]
(x∗ − xk)dt

∥∥∥∥
2

≤ ‖
(
∇2f(xk)

)−1 ‖2
∫ 1

0

∥∥[∇2f(xk + t(x∗ − xk))−∇2f(xk)
]
(x∗ − xk)

∥∥
2
dt

≤ ‖
(
∇2f(xk)

)−1 ‖2
∫ 1

0

∥∥∇2f(xk + t(x∗ − xk))−∇2f(xk)
∥∥
2
‖(x∗ − xk)‖2 dt

(∗)
≤ 1

m

∫ 1

0

Lt‖xk − x∗‖22dt

=
L

2m
‖xk − x∗‖22,

where, at point (∗), we used the two assumptions. The first part of the theorem is proved.

The second part is proved by induction. For k = 0, we assume that

‖x0 − x∗‖2 ≤
m

L
=

2m

L

(
1

2

)20

. (5.73)
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Let the assumption hold for some k, that is,

‖xk − x∗‖2 ≤
2m

L

(
1

2

)2k

. (5.74)

We will prove that it holds for k + 1. From the first part of the theorem, we have that

‖xk+1 − x∗‖2 ≤
L

2m
‖xk − x∗‖22

≤ L

2m

(
2m

L

(
1

2

)2k
)2

=
2m

L

(
1

2

)2k+1

,

(5.75)

completing the proof.
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Chapter 6

Optimality Conditions

In this chapter, we derive necessary and sufficient conditions characterizing optimal so-

lutions of convex optimization problems. First, we prove Farkas’ Lemma and use it to

prove the Fritz John conditions. Then, we make an additional assumption and prove the

Karush-Kuhn-Tucker conditions.

Our approach, which is primarily geometric, is different from that of Boyd and Vanden-

berghe,1 and is based on material from the book by Bazaraa, Sherali, Shetty and notes by

M. Epelman (available online) (see also Chapters 10 and 11 of the book by A. Beck).

The optimality conditions (FJ, KKT) are extremely important because

1. they offer geometric interpretation and deeper understanding of the problem,

2. important constrained optimization algorithms search the optimal point by, essen-

tially, searching for the point which satisfies the optimality conditions.

6.1 Necessary optimality conditions

Consider the convex optimization problem

minimize f0(x)

subject to fi(x) ≤ 0, i = 1, . . . , m

hi(x) = 0, i = 1, . . . , p,

(6.1)

with hi(x) = aT
i x− bi, for i = 1, . . . , p.

1Which can be seen as complementary to the geometric approach and deserves independent study.

77
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We assume that the functions fi, for i = 0, . . . , m, are differentiable, with fi : domfi ⊆
Rn → R, with domfi, for i = 0, . . . , m, open convex sets.

Equality constraints can be expressed in the form

Ax = b, (6.2)

with

A :=




aT
1
...

aT
p


 , b :=




b1
...

bp


 . (6.3)

Let D :=
⋂m

i=0 domfi. The feasible set of problem (6.1) is the set

X := {x ∈ D | fi(x) ≤ 0, i = 1, . . . , m, Ax = b} . (6.4)

Definition 6.1.1. Let x ∈ X.

1. The set F0 := {d ∈ R
n | ∇f0(x)

Td < 0} is called “cone of descent directions” of f0,

at the point x.

2. The set I := {i ∈ {1, . . . , m} | fi(x) = 0} is called set of indices of the active inequality

constraints of problem (6.1), at the point x.

3. The set G0 := {d ∈ Rn | ∇fi(x)
Td < 0, for i ∈ I} is called “cone of interior directions

of the active inequality constraints” of problem (6.1), at the point x.

4. The set H0 := {d ∈ Rn |Ad = 0} is called set of allowed directions of the equality

constraints of problem (6.1), at the point x.

Note: Sets F0 and G0 are not cones, because they do not contain the zero element.

The first important result for the characterization of optimal solutions of problem (6.1) is

as follows.

Theorem 6.1.1. If x ∈ X is an optimal point of the problem (6.1), then

F0 ∩G0 ∩H0 = ∅. (6.5)
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Proof. We will prove this result by reductio ad absurdum.

Let x ∈ X be an optimal point for the problem (6.1) and F0 ∩ G0 ∩ H0 6= ∅. Let d ∈
F0 ∩G0 ∩H0 and θ > 0.

Then, for all sufficiently small θ and i ∈ I, we have that

fi(x+ θd) < fi(x) = 0 and A(x+ θd) = b.

Furthermore, since for i /∈ I we have that fi(x) < 0, then, for i /∈ I and sufficiently small

θ, due to the continuity of fi, we have that fi(x+ θd) < 0.

That is, for sufficiently small θ, the points x+ θd are feasible points of the problem (6.1).

At the same time, however, for sufficiently small θ, we have that f0(x+θd) < f0(x), which

is false, because we have assumed that the point x is optimal.

Theorem 6.1.1 indicates that, if the point x ∈ X is optimal for the problem (6.1), then

there is no strictly feasible direction d which, at the same time, is decreasing direction of

f0.

6.2 Farkas’ Lemma

Next, we will translate the geometric condition (6.5) into an algebraic relationship between

the gradients of the cost and constraint functions.

First, we prove the best-known result from a class of results that are known as Theorems

of the Alternatives.

Lemma 6.2.1. Farkas’ Lemma. Let A ∈ Rm×n and c ∈ Rn. Then, exactly one of the

following systems has a solution:

(1) Ax ≤ 0, cTx > 0,

(2) ATy = c, y ≥ 0.
(6.6)

Proof. Assume that system (2) has a solution, that is, there exists y ≥ 0 such that so that

ATy = c.

Next, we consider the system (1) and more specifically the inequality Ax ≤ 0. The

inequality is satisfied for x = 0. But this solution does not satisfy the inequality cTx > 0.
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Figure 6.1: Farkas’ Lemma (a) the system (1) has a solution (b) the system (2) has a

solution - in bold color the cone of possible solutions.

If there is no x 6= 0 satisfying the inequality Ax ≤ 0, then the system (1) has no solution.

If there exists x 6= 0 which satisfies inequality Ax ≤ 0, then, since y ≥ 0 and Ax ≤ 0, we

get that cTx = yTAx ≤ 0. That is, in this case too, the system (1) has no solution.

Next, we assume that the system (2) has no solution.

We define the set M := {x ∈ Rn |x = ATy,y ≥ 0}. We know that the set M is a closed

convex cone, because if

A :=




aT
1
...

aT
m


 , (6.7)

then M = {∑m
i=1 yiai | yi ≥ 0, for i = 1, . . . , m}. That is, M is the conic hull of a1, . . . , am.

In addition, from the assumption about the non existence of a solution for the system (2),

we know that c /∈ M.

Therefore, there exists a hyperplane which separates the point c and the convex set M.

That is, there exist p ∈ Rn and α ∈ R such that pTc > α and pTx ≤ α for every x ∈ M.

Then

1. Since 0 ∈ M, we have that 0 = pT0 ≤ α and pTc > α ≥ 0, so, pTc > 0.

2. We recall that for each x ∈ M, we have that α ≥ pTx.
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Furthermore, x ∈ M implies that x = ATy , with y ≥ 0. Therefore, for every y ≥ 0,

we have

α ≥ pTx = pTATy = yTAp.

But, since y ≥ 0 can become arbitrarily large, the inequality α ≥ yTAp, for every

y ≥ 0, implies that Ap ≤ 0.

This happens because, if some element of Ap is greater than zero, say (Ap)i > 0,

then we can choose a y which has zeros everywhere except the i-th position where it

has arbitrarily large value, yi, so that the inequality α ≥ yTAp is not satisfied.

Therefore, we constructed a vector p such that Ap ≤ 0 and cTp > 0. Thus, we found a

solution for the system (1), completing the proof.

The following result is an important application of Farkas’ Lemma.

Lemma 6.2.2. (Basic Lemma) Exactly one of the following two systems has a solution.

(1) Ax < 0, Bx ≤ 0, Hx = 0

(2) ATu+BTw +HTv = 0, u ≥ 0, w ≥ 0, 1Tu = 1,
(6.8)

where 1 := (1, . . . , 1).

Proof. The system (1) is equivalently expressed as

Ax+ e1 ≤ 0, e > 0

Bx ≤ 0

Hx ≤ 0

−Hx ≤ 0.

(6.9)

A more condensed form of the above system is as follows:




A 1

B 0

H 0

−H 0




[
x

e

]
≤ 0,

[
0 · · · 0 1

] [ x

e

]
> 0. (6.10)

The system (6.10) has exactly the form of system (1) of Lemma 6.2.1.
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The system corresponding to the system (2) of Lemma 6.2.1 has the form




A 1

B 0

H 0

−H 0




T 


u

w

v1

v2


 =




0
...

0

1



, (u,w,v1,v2) ≥ 0, (6.11)

or, equivalently,

ATu+BTw +HT (v1 − v2) = 0, 1Tu = 1, (u,w,v1,v2) ≥ 0. (6.12)

Setting v := v1 − v2, completes the proof.

Note: The relation 1Tu = 1 implies that u 6= 0. Therefore, in the statement of the

theorem, the relation 1Tu = 1 can be replaced by the relation u 6= 0.

6.3 First-order optimality conditions

Next, we use Lemma 6.2.2 and prove important algebraic optimality conditions for the

optimization problem (6.1).

Theorem 6.3.1. (Fritz John necessary conditions) Let x ∈ X be an optimal point for the

problem (6.1). Then, there exists a vector (u0,u,v) such that

u0∇f0(x) +

m∑

i=1

ui∇fi(x) +ATv = 0,

(u0,u) ≥ (0, 0), (u0,u) 6= (0, 0),

uifi(x) = 0, i = 1, . . . , m.

(6.13)

Proof. Without loss of generality, we assume I = {1, . . . , l} and define

A :=




∇f0(x)
T

∇f1(x)
T

...

∇fl(x)
T



. (6.14)

Since x ∈ X is an optimal point for the problem (6.1), from Theorem 6.1.1, we conclude

that F0 ∩G0 ∩H0 = ∅.
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That is, there is no d which satisfies the relations Ad < 0 and Ad = 0. Therefore, from

Lemma 6.2.2 for B = 0, we conclude that there exist vectors (u0, u1, . . . , ul) and v such

that

u0∇f0(x) +
l∑

i=1

ui∇fi(x) +ATv = 0, (6.15)

with (u0, u1, . . . , ul) ≥ 0 and (u0, u1, . . . , ul) 6= 0. We set ul+1 = · · · = um = 0.

Therefore, we get that (u0,u) ≥ (0, 0), (u0,u) 6= (0, 0) and uifi(x) = 0, for i = 1, . . . , m.

The proof is complete.

Next, we use an additional assumption and prove the necessary KKT conditions.

Theorem 6.3.2. (Necessary conditions KKT) Let x ∈ X be an optimal point of the

optimization problem (6.1). Moreover, assume that the gradients of all active constraints

of problem (6.1)2 at the point x are linearly independent. Then, there exist vectors u and

v such that

∇f0(x) +

m∑

i=1

ui∇fi(x) +ATv = 0,

u ≥ 0, uifi(x) = 0, for i = 1, . . . , m.

(6.16)

Proof. We have assumed that x is an optimal point of the problem (6.1). Therefore, it

must satisfy the Fritz John conditions of (6.13).

If u0 > 0, then we can re-parameterize the Fritz John conditions as follows: ui :=
ui

u0
, for

i = 0, . . . , m, and vi :=
vi
u0
, for i = 1, . . . , p, taking (6.16).

If u0 = 0, then there exist u ≥ 0, with u 6= 0, and v such that

∑

i∈I
ui∇fi(x) +

p∑

i=1

viai = 0. (6.17)

This, however, is imposible, because we have assumed that the gradients of the active

constraints at point x are linearly independent. The proof is complete.

Next, we list sufficient optimality conditions.

2As active constraints of the problem are defined the active inequality constraints and all the equality

constraints.
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Theorem 6.3.3. (Sufficient Conditions KKT) Let the point x ∈ X satisfy the Karush-

Kuhn-Tucker conditions, that is, for some u ∈ Rm and v ∈ Rp, the following relations

hold:

∇f0(x) +
m∑

i=1

ui∇fi(x) +ATv = 0,

u ≥ 0, uifi(x) = 0, for i = 1, . . . , m.

(6.18)

Then, x is an optimal point for the problem (6.1).

Proof. We know that the feasible set X of the problem (6.1) is convex. Let x̂ ∈ X be a

point different from x. The points θx̂+ (1− θ)x, with 0 ≤ θ ≤ 1, are feasible. This means

that, for every i ∈ I and 0 ≤ θ ≤ 1,

fi(θx̂+ (1− θ)x) = fi(x+ θ(x̂− x)) ≤ 0 = fi(x). (6.19)

Since the value of fi does not increase when moving from x along the direction x̂− x, we

have that, for each i ∈ I,

∇fi(x)
T (x̂− x) ≤ 0. (6.20)

Also, since x̂,x ∈ X, we have that

A(x̂− x) = 0. (6.21)

Using (6.18), (6.20), and (6.21), we obtain that, for any x̂ ∈ X,

∇f0(x)
T (x̂− x) = −

(
m∑

i=1

ui∇fi(x)
T + vTA

)
(x̂− x)

= −
m∑

i=1

ui∇fi(x)
T (x̂− x) + vTA(x̂− x)

≥ 0.

(6.22)

We recall that a sufficient and necessary condition for the point x∗ to be a solution for the

problem minx∈X f0(x) is as follows:

∇f0(x∗)
T (y− x∗) ≥ 0, ∀y ∈ X. (6.23)

Therefore, from (6.22), we conclude that, for any x̂ ∈ X, f0(x̂) ≥ f0(x). That is, x is an

optimal point of the problem (6.1).
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6.4 Constraint qualification

In Theorem 6.3.2, we assumed that

1. the point x is optimal for problem (6.1),

2. “a certain requirement” is satisfied by the constraints,

and we proved the necessity of the KKT conditions.

The extra “requirement,” which allows us to prove the KKT conditions, is called con-

straint qualification.

We have already proved that if the gradients of the active constraints of the problem (6.1)

at the optimal point x are linearly independent, then the KKT conditions hold true.

However, this requirement is local, because it only concerns the optimal point and can be

checked only if we have in advance some optimal point in mind.

An extremely useful global condition is the following.

Definition 6.4.1. (Slater Condition)Consider the optimization problem (6.1). The Slater

condition is satisfied if there exists x̄ ∈ X such that fi(x̄) < 0, for i = 1, . . . , m.3

Theorem 6.4.1. (Slater condition and necessity of the KKT conditions) Let the Slater

condition be satisfied for the optimization problem (6.1). Then, the KKT conditions are

necessary to characterize the optimal point of the problem, that is, if x ∈ X is an optimal

point of the problem (6.1), then it satisfies the KKT conditions.

Proof. Let x ∈ X be an optimal point of the problem (6.1). Then, the Fritz John conditions

hold, i.e., there is a vector (u0,u,v), with (u0,u) ≥ 0 and (u0,u) 6= 0, such that

u0∇f0(x) +
m∑

i=1

ui∇fi(x) +ATv = 0, (6.24)

with uifi(x) = 0, for i = 1, . . . , m. If u0 6= 0, then we can divide by u0 and get the KKT

conditions.

Assume that u0 = 0. Since we have assumed that the Slater condition is satisfied, there

exists x̄ ∈ X such that, for each i ∈ I,

0 = fi(x) > fi(x̄). (6.25)

3Obviously, since x̄ ∈ X, the relation Ax̄ = b will also be satisfied.
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From the convexity of fi, we have that

fi(x̄) ≥ fi(x) +∇fi(x)
T (x̄− x). (6.26)

From the relations (6.25) and (6.26), we conclude that, for every i ∈ I, the following

inequality holds

∇fi(x)
T (x̄− x) < 0. (6.27)

Furthermore, since x̄ and x are feasible points, we have that A(x̄− x) = 0. From (6.24)

and the assumption u0 = 0, we get that one (or some) of ui, for i ∈ I, should be positive,

therefore

0 = 0T (x̄− x) =

(
m∑

i=1

ui∇fi(x)
T + vTA

)
(x̄− x)

=
∑

i∈I
ui∇fi(x)

T (x̄− x)

< 0,

(6.28)

which is false. So, if the Slater condition holds, then we must have that u0 > 0, completing

the proof.

6.5 Geometric interpretation for problems with in-

equality constraints

In order to give a geometric interpretation to the KKT conditions, we consider the con-

vex optimization problem with only inequality constraints. Furthermore, we assume that

Slater’s condition holds. In this case, the KKT conditions are sufficient and necessary

optimality conditions. If I = {1, . . . , l}, then the point x ∈ X is optimal if, and only if,

there exists a vector (u1, . . . , ul) with (u1, . . . , ul) ≥ 0 such that

l∑

i=1

ui∇fi(x) = −∇f0(x) (6.29)

That is, the point x ∈ X is optimal for the optimization problem if, and only if, the negative

gradient of f0 at the point x, −∇f0(x), lies in the cone generated by the gradients of the

active inequality constraints at the point x (see Figure 6.2).

In Figure 6.3, we depict the optimization problem of the convex function f0(x) under the

affine equality constraint h1(x) = aTx − b = 0. Notice that ∇f0(x∗) is collinear with

∇h1(x∗) but can have the same or opposite direction (i.e., v ∈ R).
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f1(x) = 0 f1(x) = 0

f1(x) = 0

f2(x) = 0

f3(x) = 0

(b)

(d)(c)

f2(x) = 0
f2(x) = 0

f2(x) = 0

f3(x) = 0

f3(x) = 0
x∗

f1(x) = 0

f3(x) = 0
∇f3(x∗)

∇f0(x∗)

x∗

∇f0(x∗)

∇f1(x∗)

X

X
X

∇f1(x∗)

X

(a)

x∗

f0(x) = p∗

f0(x) = p∗

Figure 6.2: KKT conditions. (a) Feasible set of inequality constraints X = {x ∈ Rn :

fi(x) ≤ 0, i = 1, 2, 3}. (b) Optimal point x∗ inside the feasible set (c) Optimal point x∗

with one active constraint (d) Optimal point x∗ with two active constraints.

6.6 Examples

First, we give an example where the conditions KKT do not hold.

Example 6.6.1. Consider the optimization problem

minimize x1

subject to (x1 − 1)2 + (x2 − 1)2 ≤ 1

(x1 − 1)2 + (x2 + 1)2 ≤ 1.

(6.30)

The only feasible point is x = (1, 0). Prove that, at this point, the Fritz John conditions

hold true but the KKT conditions do not hold true. Try to understand why this happens.

Are the gradients of the active constraints independent or does the Slater condition hold

true? �

We continue with two very important examples.
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aTx− b = 0

∇f0(x∗)

a

a

∇f0(x∗)

aTx− b = 0

{x | f0(x) = p∗}

{x | f0(x) = p∗}

Figure 6.3: KKT conditions with a linear constraint for v1 > 0 and v1 < 0.

Example 6.6.2. Let f(x) = 1
2
xTPx+qTx and consider the quadratic problem with affine

equality constraints

minimize f(x)

subject to Ax = b.
(6.31)

The KKT equations are

∇f(x) +ATv = 0

Ax = b
(6.32)

and can be expressed as the system of linear equations

[
P AT

A O

][
x

v

]
=

[
−q

b

]
. (6.33)

If there exists a solution of the system (6.33), say, (x∗,v∗), then x∗ is called primal

optimal and v∗ dual optimal. �

We will say more about this very important problem later.
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Example 6.6.3. For xk ∈ dom f , with ∇f(xk) 6= 0, A = AT ≻ 0, and t > 0, compute

the solution of the problem

minimize ∇f(xk)
Tx

subject to (x− xk)
TA(x− xk) ≤ t2.

(6.34)

The problem (6.34) can be written as

minimize f0(x) := ∇f(xk)
Tx

subject to f1(x) ≤ 0,
(6.35)

with f1(x) := (x− xk)
TA(x− xk)− t2.

The KKT conditions are

(a) ∇f(xk) + 2λA(x∗ − xk) = 0

(b) f1(x∗) = (x∗ − xk)
TA(x∗ − xk)− t2 ≤ 0

(c) λ ≥ 0, λ f1(x∗) = 0.

(6.36)

From the relation (a), we find that we must have λ > 0 (why?). From this, we conclude

that f1(x∗) = 0 (why?).

From (a), we get

(x∗ − xk) = − 1

2λ
A−1∇f(xk). (6.37)

Substituting this value to (b) and noting that f1(x∗) = 0, we have

1

4λ2
∇f(xk)

TA−1∇f(xk) = t2

=⇒ λ =
1

2t

(
∇f(xk)

TA−1∇f(xk)
) 1

2 .
(6.38)

Substituting this value of λ into (6.37), we obtain

x∗ = xk −
t

(∇f(xk)TA−1∇f(xk))
1

2

A−1∇f(xk). (6.39)

We observe that, indeed, f1(x∗) = 0.

In addition, we make the following important observations:

1. Setting A = I, we get the step of the gradient descent method.

2. Setting A = ∇2f(xk), we obtain the step of the Newton method.
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∇f0(xk)

{x | f0(x) = f0(xk)}

{x | (x− xk)
T
A(x− xk) = t2}

xk

xk+1

∇f0(xk)

{x | f0(x) = f0(xk)}

xk

xk+1

{x | ‖x− xk‖
2
2 = t2}

Figure 6.4: Problem solution (6.34) for A = I and A = ∇2f0(xk).

3. The solution would be exactly the same if instead of f0(x) = ∇f(xk)
Tx we had set

f0(x) = f(xk) +∇f(xk)
T (x−xk) (why?), which is the first order Taylor approxima-

tion of f(x) around the point xk.

Therefore, we get a new interpretation of gradient descent and Newton methods, for uncon-

strained problems, as minimizations of the first order approximation of the cost function

at point xk, subject to an inequality constraint of suitably chosen norms in R
n (see Figure

6.4). �

Example 6.6.4. Let S = {x ∈ R2 | x2
1 + x2

2 ≤ 1, x1 ≥ 0, x2 ≥ 0}. Minimize f0(x) = cTx,

with (1) c = [1 1]T and (2) c = [−2 − 1]T . Compute the point

x∗ = argmin
x∈S

f0(x).

Point x∗ is the solution of the convex problem

minimize f0(x) = cTx,

subject to f1(x) = x2
1 + x2

2 − 1 ≤ 0

f2(x) = −x1 ≤ 0

f3(x) = −x2 ≤ 0.

(6.40)

The KKT conditions for this problem are as follows:

∇f0(x∗) + λ1∇f1(x∗) + λ2∇f2(x∗) + λ3∇f3(x∗) = 0

λi ≥ 0, i = 1, 2, 3,

fi(x∗) ≤ 0, i = 1, 2, 3,

λifi(x∗) = 0, i = 1, 2, 3,

(6.41)
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x2

x1

cTx = a1

cTx = a2

c

Figure 6.5: Feasible set S and level sets of f0(x), with c = [1 1]T , and a1 < a2.

with

∇f0(x∗) = c, ∇f1(x∗) =

[
2x∗,1

2x∗,2

]
, ∇f2(x∗) =

[
−1

0

]
, ∇f3(x∗) =

[
0

−1

]
.

1. First, we consider the case where c = [1 1]T (see Figure 6.5). Substituting into (6.41),

we get

[
2x∗,1λ1 − λ2

2x∗,2λ1 − λ3

]
=

[
−1

−1

]

λi ≥ 0, i = 1, 2, 3,

fi(x∗) ≤ 0, i = 1, 2, 3,

λifi(x∗) = 0, i = 1, 2, 3.

(6.42)

If λ1 > 0, then

x∗,1 =
−1 + λ2

2λ1

, x∗,2 =
−1 + λ3

2λ1

. (6.43)

For x∗ to be feasible, x∗,1 ≥ 0 and x∗,2 ≥ 0 should hold true. For this to happen, we

must have λ2 ≥ 1 and λ3 ≥ 1.

Since, however, it should be true that λifi(x∗) = 0, for i = 2, 3, we should have that

x∗,1 = x∗,2 = 0.
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x2

x1

cTx = a1

cTx = a2c

Figure 6.6: Feasible set S and level sets of f0(x), with c = [−2 − 1]T , and a1 < a2.

But, in this case, we have that x2
∗,1 + x2

∗,2 − 1 < 0 and the relation λ1f1(x∗) = 0 does

not hold true.

So, we cannot have λ1 > 0.

If λ1 = 0, then, from the first equation of (6.42), we obtain that λ2 = 1 and λ3 = 1,

which implies that x∗,1 = x∗,2 = 0. We observe that, if we set these values, we satisfy

the KKT conditions.

So, the optimal solution is x∗ = (0, 0), λ1 = 0, λ2 = 1, and λ3 = 1.

2. Next, we consider the case where c = [−2 − 1]T . From Figure 6.6, we conclude that

only the constraint f1(x) ≤ 0 will be active at the optimal point. Therefore, we have

λ2 = λ3 = 0, and

[
2x∗,1λ1

2x∗,2λ1

]
=

[
2

1

]

λi ≥ 0, i = 1, 2, 3,

fi(x∗) ≤ 0, i = 1, 2, 3,

λifi(x∗) = 0, i = 1, 2, 3.

(6.44)

From the first equation, we get that λ1 = 1
x∗,1

= 1
2x∗,2

. Therefore, x∗,1 = 2x∗,2.
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Substituting in the relationship f1(x∗) = 0, we get

x2
∗,1 + x2

∗,2 = 1 ⇒ 4x2
∗,2 + x2

∗,2 = 1 ⇒ x∗,2 =
1√
5
. (6.45)

So, we get that x∗,1 =
2√
5
, x∗,1 =

1√
5
, λ1 =

√
5
2
, λ2 = λ3 = 0. �

6.7 Projection onto a convex set

x0

S

PS(x0)

x

Figure 6.7: Projection of point x0 onto convex set S.

Next, we turn to the very important problem of finding the projection onto a closed convex

set. Let S ⊂ Rn be a (non-empty) closed convex set and point x0 ∈ Rn. The solution of

the problem

minimize f0(x) := ‖x0 − x‖22
subject to x ∈ S,

(6.46)

is called the projection of the point x0 onto the set S and is denoted by PS(x0).

We know that the point x∗ minimizes the convex function f(x) over the set X if, and only

if,

∇f(x∗)
T (x− x∗) ≥ 0, ∀x ∈ X. (6.47)

Therefore, the point PS(x0) is a solution of the problem (6.46) if, and only if,

(x0 −PS(x0))
T (x− PS(x0)) ≤ 0, ∀x ∈ S. (6.48)

Next, we study a very important example whose solution is given in closed form.

Example 6.7.1. Find the projection of the point x0 ∈ Rn onto the convex set P := {x ∈
Rn |x ≥ 0}.
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This problem is written as follows:

minimize f0(x) :=
1
2
‖x0 − x‖22

subject to fi(x) = −xi ≤ 0, i = 1, . . . , n.
(6.49)

The KKT conditions are as follows:

∇f0(x∗) +

n∑

i=1

λi∇fi(x∗) = 0

λi ≥ 0, i = 1, . . . , n

fi(x∗) ≤ 0, i = 1, . . . , n

λifi(x∗) = 0, i = 1, . . . , n.

(6.50)

Defining λ := (λ1, . . . , λn), we write the first relation of (6.50) as

(x∗ − x0)− λ = 0

=⇒ x∗,i = x0,i + λi, i = 1, . . . , n.
(6.51)

Therefore, for i = 1, . . . , n, we have

(a) λi ≥ 0, (b) x∗,i = x0,i + λi ≥ 0, (c) λix∗,i = λi(x0,i + λi) = 0. (6.52)

We will consider the above relations separately for each i.

1. Let x0,i ≥ 0. Then, due to (a) and (c), we have that λi = 0. Therefore, from (b) we

get x∗,i = x0,i.

2. Let x0,i < 0. Then, due to (b), we have that λi > 0. Therefore, due to (c), we have

that x∗,i = x0,i + λi = 0.

So, P(x0) = (x0)+ = max{0,x0}, where the operator max{·, ·} is applied elementwise. �

Exercise: Find the projection of the point x0 ∈ Rn onto the set

B(0, r) := {x ∈ R
n | ‖x‖2 ≤ r}.

Example 6.7.2. Let 0 6= a ∈ Rn and hyperplane H := {x ∈ Rn | aTx = b}. Find the

distance of a point x0 ∈ Rn from H.

We consider the problem

minimize f0(x) :=
1
2
‖x0 − x‖22

subject to f1(x) = aTx− b = 0.
(6.53)
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The KKT conditions are as follows:

∇f0(x∗) + v1∇f1(x∗) = 0 =⇒ x∗ − x0 + v1a = 0,

aTx∗ − b = 0.
(6.54)

Multiplying the first equation from the left by the vector aT , we get

aTx∗ − aTx0 + v1‖a‖22 = 0 =⇒ v1 =
1

‖a‖22
(
aTx0 − b

)
. (6.55)

Therefore, the projection of x0 onto H is as follows:

x∗ = x0 −
aTx0 − b

‖a‖22
a, (6.56)

and the distance of x0 from H is equal to

‖x∗ − x0‖2 =
|aTx0 − b|

‖a‖2
. (6.57)

Exercise: Let A ∈ Rm×n and b ∈ Rm. Find the projection of the point x0 ∈ Rn onto the

set

S := {x ∈ R
n |Ax = b}.

Exercise: Let a,b ∈ Rn with a ≤ b. Find the projection of the point x0 ∈ Rn onto the

set

S := {x ∈ R
n | a ≤ x ≤ b}.
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Chapter 7

Duality

For every optimization problem there is another optimization problem which is closely

related to the original. The original is called the primal problem while the related one is

called the Lagrange dual problem.

Under certain conditions, for example, convexity and some constraint qualification, the

primal problem and its dual have the same optimal cost value and, moreover, in some

cases, it is possible to easily compute the solution of the primal problem via the solution

of the dual.

7.1 Primal and Dual Problem

Let us consider the minimization problem

minimize f0(x)

subject to fi(x) ≤ 0, i = 1, ..., m,

hi(x) = 0, i = 1, ..., p,

(7.1)

with x ∈ Rn.

Let D :=
⋂m

i=0 dom fi ∩
⋂p

i=1 dom hi. The feasible set is given by

X := {x ∈ D | fi(x) ≤ 0, i = 1, . . . , m, hi(x) = 0, i = 1, . . . , p}. (7.2)

At present, we do not assume that the problem (7.1) is a convex optimization problem.

We assume that there is a solution to the problem, say, x∗ ∈ X, with f0(x∗) = p∗ > −∞.

97



98 CHAPTER 7. DUALITY

We set λ := [λ1 · · · λm ]T and v := [ v1 · · · vp ]T and define the Lagrangian L : D× Rm ×
Rp → R, as

L(x,λ,v) = f0(x) +

m∑

i=1

λifi(x) +

p∑

i=1

vihi(x). (7.3)

The vectors λ and v are called dual variables or Lagrange multiplier vectors.

First, we note that

max
λ≥0,v

L(x,λ,v) =

{
f0(x), if x ∈ X,

+∞, if x /∈ X.
(7.4)

Therefore, the problem (7.1) is equivalent to the problem

min
x∈D

max
λ≥0,v

L(x,λ,v). (7.5)

The dual problem is the following:

max
λ≥0,v

min
x∈D

L(x,λ,v). (7.6)

Next, we will study the dual problem and its relation to the primal.

7.2 The Lagrange dual function

We define the Lagrange dual function, or, simply, dual function, g : Rm
+ × R

p → R, as

g(λ,v) := inf
x∈D

L(x,λ,v)

= inf
x∈D

(
f0(x) +

m∑

i=1

λifi(x) +

p∑

i=1

vihi(x)

)
.

(7.7)

When at a point (λ,v) the Lagrangian is unbounded below, we set g(λ,v) = −∞. We

define the domain of g as follows:

dom g = {(λ,v) ∈ R
m
+ × R

p : g(λ,v) > −∞}. (7.8)

Theorem 7.2.1. Let g be the Lagrange dual function of (7.7). Then

1. dom g is a convex set.

2. The function g is concave.
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Proof. First, we prove that the domain of g is a convex set. Let (λ1,v1), (λ2,v2) ∈ domg,

that is,

g(λ1,v1) = inf
x∈D

L(x,λ1,v1) > −∞,

g(λ2,v2) = inf
x∈D

L(x,λ2,v2) > −∞.
(7.9)

Assume that α ∈ [0, 1]. Then,

g(αλ1 + (1− α)λ2, αv1 + (1− α)v2)

= inf
x∈D

L(x, αλ1 + (1− α)λ2, αv1 + (1− α)v2)

!
= inf

x∈D
(αL(x,λ1,v1) + (1− α)L(x,λ2,v2))

≥ inf
x∈D

αL(x,λ1,v1) + inf
x∈D

(1− α)L(x,λ2,v2)

= α inf
x∈D

L(x,λ1,v1) + (1− α) inf
x∈D

L(x,λ2,v2)

= αg(λ1,v1) + (1− α)g(λ2,v2)

> −∞.

Thus, dom g is a convex set. During the proof, we also proved the concavity of g.

Theorem 7.2.2. Let g be the Lagrange dual function of (7.7). Then, for each λ ≥ 0 and

v, we have

g(λ,v) ≤ p∗. (7.10)

Proof. Let x̄ be a feasible point of the problem (7.1), that is, x̄ ∈ X. Then

m∑

i=1

λifi(x̄) +

p∑

i=1

vihi(x̄) ≤ 0,

because every term of the first sum is a non-positive number and every term of the second

sum equals zero.

Therefore,

L(x̄,λ,v) = f0(x̄) +

m∑

i=1

λifi(x̄) +

p∑

i=1

vihi(x̄) ≤ f0(x̄) (7.11)

and

g(λ,v) = inf
x∈D

L(x,λ,v) ≤ L(x̄,λ,v) ≤ f0(x̄). (7.12)
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The above relation holds for every x̄ ∈ X, so it also holds for the optimal point x∗.

Therefore,

g(λ,v) ≤ f0(x∗) = p∗, (7.13)

proving the theorem.

Through the dual function, we derive a non-trivial lower bound for p∗ only when λ ≥ 0

and (λ,v) ∈ dom g, that is, g(λ,v) > −∞.

The pairs (λ,v) with λ ≥ 0 and (λ,v) ∈ dom g are called dual feasible points.

Example 7.2.1. Consider the optimization problem

minimize xTx, subject to Ax = b. (7.14)

with A ∈ Rp×n. The Lagrangian is given by

L(x,v) = xTx+ vT (Ax− b), (7.15)

with domL = Rn × Rp. The dual function is defined as

g(v) := inf
x∈Rn

L(x,v). (7.16)

L(x,v) is a convex quadratic function of x. Thus, the point x which minimizes the La-

grangian is given by the solution of the equation

∇xL(x,v) = 0 ⇒ 2x+ATv = 0 ⇒ x = −1

2
ATv. (7.17)

Therefore,

g(v) = L

(
−1

2
ATv,v

)
= −1

4
vTAATv − bTv, (7.18)

which is a concave quadratic function of v ∈ Rp.

From weak duality, we have that, for every v ∈ R
p,

−1

4
vTAATv − bTv ≤ inf

x∈Rn
{xTx |Ax = b}. (7.19)

�

Example 7.2.2. (Linear problem in standard form) Consider the linear programming

problem in standard form

minimize cTx

subject to Ax = b,

x ≥ 0.

(7.20)
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The inequality x ≥ 0 is equivalent to the inequality −x ≤ 0, that is, −xi ≤ 0, for

i = 1, . . . , n.

The Lagrangian is as follows:

L(x,λ,v) = cTx−
n∑

i=1

λixi + vT (Ax− b)

= −bTv + (c+ATv − λ)Tx.

(7.21)

The dual function is given by

g(λ,v) := inf
x∈Rn

L(x,λ,v) = −bTv + inf
x∈Rn

{
(c+ATv − λ)Tx

}
. (7.22)

If there is no bound on x, then a linear function of x is bounded below only if it is identically

zero.

Therefore,

g(λ,v) =

{
−bTv, c+ATv − λ = 0,

−∞, otherwise.
(7.23)

The inequality (7.13) is non-trivial only for pairs (λ,v) ∈ R
m × R

p such that

c+ATv − λ = 0. (7.24)

These pairs are the solution of the system of linear equations

[
−I AT

] [
λ

v

]
= −c. (7.25)

Therefore, they define an affine set.

For these pairs of points, the function −bTv provides a non-trivial lower bound for the

optimal value of the problem (7.20). �

7.3 The Lagrange dual problem

We have seen that, for each pair (λ,v), with λ ≥ 0, the function g(λ,v) is a lower bound

for the optimal value of the cost function p∗.

An extremely important question is the following: “What is the largest lower bound that

we can extract from the dual function g(λ,v)?”
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To answer this question, we define the problem

max
λ,v

g(λ,v)

s.t. λ ≥ 0.
(7.26)

The problem (7.1) is called primal problem, while the problem (7.26) is called Lagrange

dual problem.

If the problem (7.26) has a solution, then the optimal point, (λ∗,v∗), is called dual opti-

mal or optimal Lagrange multipliers.

The problem (7.26) is always a convex optimization problem because the constraint λ ≥ 0

is convex and the function g(λ,v) is concave.

Example 7.3.1. (Linear problem in standard form) Consider the linear programming

problem in standard form

minimize cTx

subject to Ax = b,

x ≥ 0.

(7.27)

As we have seen, the dual function is

g(λ,v) =

{
−bTv, c+ATv − λ = 0,

−∞, otherwise.
(7.28)

The dual problem is

maximize g(λ,v)

subject to λ ≥ 0.
(7.29)

The function g takes values other than −∞ only if c+ATv − λ = 0.

Therefore, an equivalent expression for the dual problem is as follows

maximize −bTv

subject to c+ATv − λ = 0,

λ ≥ 0.

(7.30)

or, equivalently,

maximize −bTv

subject to c+ATv ≥ 0,
(7.31)

which is a linear programming problem in inequality form. �

More examples in the book by Boyd and Vandenberghe.
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7.4 Weak duality

We know that g(λ,v) ≤ p∗, for every λ ≥ 0 and v. If we define

d∗ := max
λ≥0,v

g(λ,v), (7.32)

then we get that

d∗ ≤ p∗. (7.33)

The inequality (7.33) is called weak duality. The relation (7.33) holds even when the

values of d∗ and p∗ are ±∞. For example, if p∗ = −∞, that is, if the primal problem is

unbounded from below, then d∗ = −∞, that is, the dual problem is not feasible, and vice

versa.

The quantity p∗ − d∗ is called optimal duality gap and is always non-negative.

7.5 Strong Duality

If d∗ = p∗, then we say that strong duality holds. Strong duality does not always hold.

But, if the original problem is convex, then, very often, it does. For example, if the primal

problem is convex and the Slater condition is satisfied, then it can be proved that strong

duality holds (see section 5.3.2 of B&V’s book).

7.6 Optimality Conditions

Next, we assume that strong duality holds and derive optimality conditions for the primal

problem.1

1This approach is complementary to that of the previous chapter.
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7.6.1 Complementary slackness

Let x∗ be the primal optimal point and (λ∗,v∗), with λ∗ ≥ 0, the dual optimal point.

Then

f0(x∗) = g(λ∗,v∗) = inf
x∈D

(
f0(x) +

m∑

i=1

λ∗,ifi(x) +

p∑

i=1

v∗,ihi(x)

)

︸ ︷︷ ︸
L(x,λ∗,v∗)

(a)

≤ f0(x∗) +

m∑

i=1

λ∗,ifi(x∗) +

p∑

i=1

v∗,ihi(x∗)

(b)

≤ f0(x∗),

(7.34)

where

1. the inequality (a) holds because the infimum of L(x,λ∗,v∗), over all x ∈ D, is less

than or equal to L(x∗,λ∗,v∗),

2. the inequality (b) holds because λ∗,ifi(x∗) ≤ 0, for i = 1, . . . , m, and v∗,ihi(x∗) = 0,

for i = 1, . . . , p.

With some thought, we realize that the last two inequalities of (7.34) hold as equalities.

Therefore, it must be true that
m∑

i=1

λ∗,ifi(x∗) = 0, (7.35)

from which it follows that

λ∗,ifi(x∗) = 0, for i = 1, ..., m. (7.36)

The relation (7.36) is called complementary slackness.

7.6.2 Conditions KKT

Since the inequality (a) of (7.34) holds as equality, we conclude that x∗ minimizes the

function L(x,λ∗,v∗) .

Assuming that the functions fi, for i = 0, . . . , m, and hi, for i = 1, . . . , p, are differentiable,

then their domains dom fi, for i = 0, . . . , m and dom hi, for i = 1, . . . , p, are open sets,

therefore, D is also an open set.
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Note that the function L(x,λ∗,v∗) is a differentiable function of x. Therefore, at the point

x∗ which minimizes L(x,λ∗,v∗), the derivative, with respect to x, must be equal to zero,

that is,

∇Lx(x∗,λ∗,v∗) = 0,

=⇒ ∇f0(x∗) +

m∑

i=1

λ∗,i∇fi(x∗) +

p∑

i=1

v∗,i∇hi(x∗) = 0.
(7.37)

If we collect all the relations which must be satisfied by x∗, λ∗, and v∗, we get

∇f0(x∗) +

m∑

i=1

λ∗,i∇fi(x∗) +

p∑

i=1

v∗,i∇hi(x∗) = 0,

fi(x∗) ≤ 0, i = 1, ..., m,

hi(x∗) = 0, i = 1, ..., p,

λ∗,i ≥ 0, i = 1, ..., m,

λ∗,ifi(x∗) = 0, i = 1, ..., m.

(7.38)

That is, we get the KKT conditions.

Therefore, for any optimization problem with differentiable functions for which strong

duality holds, every pair of primal and dual optimal points satisfies the KKT conditions.

We will not expand further because we have already seen in the previous chapter in which

cases the KKT conditions are sufficient and necessary optimality conditions of convex

optimization problems (see the section 5.3.3 of the book B&V).

7.7 Usefulness of duality

The dual problem is very useful for many reasons. Below, we briefly present two of them.

7.7.1 Suboptimality Guarantee and Algorithm Termination Cri-

teria

If (λ̄, v̄) is a feasible point for the dual problem and x̄ is a feasible point for the primal

problem, then

g(λ̄, v̄) ≤ p∗ ≤ f(x̄). (7.39)
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Let us assume that

f(x̄)− g(λ̄, v̄) = ǭ. (7.40)

Then, from the left inequality of (7.39), we obtain that

−p∗ ≤ −g(λ̄, v̄) (7.41)

and, from (7.40), we obtain that

f(x̄)− p∗ ≤ f(x̄)− g(λ̄, v̄) = ǭ. (7.42)

That is, if we know a feasible primal point x̄ and a feasible dual point (λ̄, v̄) such that

the relation (7.40) holds, then we can conclude that x̄ is (at most) ǭ–suboptimal. This

conclusion can be used as a termination criterion for some optimization algorithms.

Others cases for which this conclusion is extremely useful are cases where the primal

problem is extremely difficult to solve, therefore, we may be satisfied with some “good”

suboptimal solutions.

7.7.2 Solving a primal problem through the dual

In some cases (1) the solution of the dual problem is much easier than the solution of the

primal problem and (2) we can (easily) solve the primal problem using the solution of the

dual.

Example 7.7.1. We consider the problem

minimize f(x) = xTx

subject to Ax = b,
(7.43)

with A ∈ Rp×n and rank(A) = p.

As we have seen, the dual function is given by the relation

g(v) = −1

4
vTAATv − bTv. (7.44)

The dual problem is the unconstrained convex quadratic problem

minimize −g(v) = 1
4
vTAATv + bTv. (7.45)

Since we have assumed that the rows of A are linearly independent, the (p × p) matrix

AAT is invertible. The solution of the dual problem is equal to

v∗ = −2 (AAT )−1b. (7.46)
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Figure 7.1: Affine set, dual function and affine set point of minimum Euclidean measure.

The KKT conditions are necessary and sufficient for this problem (why?). Thus,

∇f(x∗) +ATv∗ = 0

=⇒ 2x∗ − 2AT (AAT )−1b = 0.
(7.47)

Therefore, the optimal primal solution is given by the relation

x∗ = AT (AAT )−1b. (7.48)

Observe that Ax∗ = b. That is, we solved the primal problem with affine constraints by

using the solution of the unconstrained dual problem, which is the point of the affine set

{x ∈ Rn |Ax = b} with minimum Euclidean norm.

In Figure 7.1, we draw

1. the affine set aTx = b in R2, for aT = [ 1 1 ] and b = 1,

2. the optimal point x∗ = (0.5, 0.5), with f(x∗) = xT
∗ x∗ =0.5,

3. the dual function g(v), with maximum value g(v∗) = g(−1) = 0.5.

�
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Chapter 8

Convex optimization with affine

equality constraints

In this chapter, we will study problems of the form

minimize f(x)

subject to Ax = b,
(8.1)

with f : dom f ⊆ Rn → R being a convex doubly differentiable function, A ∈ Rp×n, with

rank(A) = p, and b ∈ Rp.

We assume that the problem has a solution, say, x∗, and define p∗ := f(x∗) = inf{f(x) |Ax =

b}. We know that the point x∗ is optimal if, and only if, the KKT conditions are satisfied,

which, in this case, are as follows:

∇f(x∗) +ATv∗ = 0, Ax∗ = b, (8.2)

with v∗ ∈ Rp. The relations (8.2) constitute a system of (n + p) (usually) nonlinear

equations.

The linear system of equations Ax∗ = b is called the system of primal feasibility. The

system of equations ∇f(x∗) + ATv∗ = 0 is called dual feasibility equations, and is, in

general, a system of nonlinear equations.

There are several approaches towards the solution of problem (8.2). We mention the

following.

1. We can remove the equality constraints and then work on problems without con-

straints, as in the previous chapter.

109
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2. If the dual function is differentiable, then we can solve the dual problem, which is an

unconstrained problem, and then, somehow, compute the primal optimal solution.

3. We can extend the Newton method from unconstrained problems to problems with

affine equality constraints. This will be the basic approach we will follow in the

sequel.

8.1 Solving a primal problem via the dual

We assume that strong duality holds. The dual function for problem (8.1) is defined as:

g(v) = inf
x∈dom f

{
f(x) + vT (Ax− b)

}

= −bTv + inf
x∈dom f

{
f(x) + vTAx

}
.

(8.3)

If the function g is doubly differentiable, then we can we use any algorithm for the solution

of unconstrained optimization problems and to solve the dual problem

max
v

g(v). (8.4)

Then, the optimal dual variable, v∗, can be used to compute the optimal primal variable,

x∗.

Example 8.1.1. (Analytic center with equality constraints) Consider the problem

min
x

f(x) = −∑n
i=1 log xi

subject to Ax = b,
(8.5)

with dom f = Rn
++ and A ∈ Rp×n with rank(A) = p.

The Lagrangian is as follows:

L(x,v) = f(x) + vT (Ax− b) = −
n∑

i=1

log xi + vT (Ax− b). (8.6)

For a given v, L(x,v) is a convex function of x (prove it).

The derivative of L, with respect to x, is as follows

∇xL(x,v) = −
[
x−1
1 · · · x−1

n

]T
+ATv. (8.7)
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Solving the equation ∇xL(x,v) = 0, we obtain

xi =
1

(ATv)i
, for i = 1, . . . , n. (8.8)

The dual function is as follows

g(v) = inf
x
L(x,v) = L(1./(ATv),v) =

n∑

i=1

log
(
ATv

)
i
+ n− bTv. (8.9)

The dual problem is

max
v

g(v) = −bTv + n+

n∑

i=1

log
(
ATv

)
i
, (8.10)

which is a problem with implicit constraints ATv > 0. Suppose that the dual problem has

a solution v∗. Then, from (8.8), we get that

x∗,i =
1

(ATv∗)i
, for i = 1, . . . , n. (8.11)

Therefore, if we solve the dual problem, then we can very easily solve the primal problem.

�

8.2 Convex quadratic problems with affine equality

constraints

Before proceeding to the extension of the Newton method for the solution of convex opti-

mization problems with affine equality constraints, we will study a simple but extremely

important problem, which has a closed form solution.

The solution of this problem will be used as a building block for the development of

algorithms for convex optimization problems with affine equality constraints.

Consider the quadratic problem with affine equality constraints

min
x

f(x) = 1
2
xTPx+ qTx+ r

subject to Ax = b,
(8.12)

with P = PT ∈ Rn×n, P � O, q ∈ Rn, and r ∈ R.
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The KKT conditions for this problem are

Px∗ + q +ATv∗ = 0, Ax∗ = b, (8.13)

or, equivalently, [
P AT

A O

][
x∗

v∗

]
=

[
−q

b

]
, (8.14)

that is, they are a system of (n+ p) linear equations.

If the coefficient matrix is invertible, then there exists a unique solution for the (primal–

dual) optimal pair (x∗,v∗). It can be shown that, if P ≻ O , then the coefficient matrix is

invertible. (For more details, see B&V, pages 522, 523).

8.3 Newton’s method starting from a feasible point

In the sequel, we extend the Newton method from unconstrained problems to problems

with affine equality constraints.

The approaches are quite similar. However, there are the following differences:

1. We must start from a feasible point, say, x0, that is, we must have x0 ∈ dom f and

Ax0 = b. Often, finding an initial feasible point is difficult and, perhaps, requires

the solution of an optimization problem, in the form of feasibility check.

2. The definition of the Newton step should be done so that the equality constraints are

taken into account, that is, we should have that A∆xNt = 0. As we shall see below,

this is relatively simple to attain.

8.4 Newton step

As in the case of unconstrained optimization problems, the Newton step can be derived

through various approaches.
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8.4.1 Definition via the minimization of a second-order approx-

imation

The first approach for the computation of the Newton step for the problem

minimize f(x)

subject to Ax = b,
(8.15)

at a feasible point x, that is, x ∈ dom f and Ax = b, is as follows.

We replace the cost function f by its second-order approximation, at the point x, con-

structing the quadratic problem, with variable z,

min
z

f̂(x+ z) = f(x) +∇f(x)Tz+ 1
2
zT∇2f(x)z

subject to A(x+ z) = b.
(8.16)

We define as Newton step for the problem (8.15), at the feasible point x, the solution of

the problem (8.16), which we call ∆xNt.
1 Essentially, the Newton step, ∆xNt, is the vector

that must be added to x so that the second-order approximation of f , at x, be minimized

at the point x+∆xNt.

The KKT conditions for the quadratic problem (8.16) are as follows
[
∇2f(x) AT

A O

][
∆xNt

w

]
=

[
−∇f(x)

0

]
, (8.17)

where w is the optimal dual variable for the given quadratic problem. If ∇2f(x) ≻ O,

then the system (8.17) has a unique solution.

As for the unconstrained optimization problems, we observe that, if the function f is

quadratic, then the Newton algorithm solves the optimization problem in one step. There-

fore, we expect that the Newton algorithm will behave (very) well when f is (very) close

to a quadratic function.

8.4.2 Definition via the solution of linearized optimality condi-

tions

Another interpretation of the Newton step, at the point x, is as follows. We have seen that

the optimality conditions for the problem (8.1) are given by the relations

∇f(x∗) +ATv∗ = 0, Ax∗ = b. (8.18)

1We assume there is a solution.



114 CHAPTER 8. AFFINE EQUALITY CONSTRAINTS

Instead of the system (8.18), which, usually, is nonlinear, we solve the following linear

approximation.

We replace x∗ with x + ∆xNt and v∗ with w. If, moreover, we replace the gradient

∇f(x+∆xNt) by its first-order Taylor approximation, at the point x, then we get

∇f(x∗) = ∇f(x+∆xNt) ≈ ∇f(x) +∇2f(x)∆xNt, (8.19)

and an approximation of (8.18) is as follows:

∇f(x) +∇2f(x)∆xNt +ATw = 0

A(x+∆xNt) = b.
(8.20)

Considering that Ax = b, the above relations are expressed as

∇2f(x)∆xNt +ATw = −∇f(x), A∆xNt = 0, (8.21)

which are the same expressions as those in (8.17).

8.4.3 Analytic expression for the Newton step

As we prove in the Appendix, the analytic expressions for ∆xNt and w are as follows:

∆xNt = −
(
∇2f(x)

)−1∇f(x)

+
(
∇2f(x)

)−1
AT
(
A
(
∇2f(x)

)−1
AT
)−1

A
(
∇2f(x)

)−1∇f(x),
(8.22)

w = −
(
A
(
∇2f(x)

)−1
AT
)−1

A
(
∇2f(x)

)−1∇f(x). (8.23)

Notice that these two quantities satisfy (8.21) and, in particular,

∆xNt = −
(
∇2f(x)

)−1 (∇f(x) +ATw
)
. (8.24)

8.4.4 Newton decrement

As in unconstrained optimization problems, we define the Newton decrement, at the feasible

point x, as follows:

λ(x) :=
(
∆xT

Nt∇2f(x)∆xNt

) 1

2 . (8.25)

The quantity λ(x) provides an approximation of the difference f(x) − p∗, based on the

second-order approximation of f , at the point x. More specifically,

f(x)− inf
z

{
f̂(x + z) |Az = 0

}
=

λ2(x)

2
. (8.26)
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The proof is as follows:

inf
z

{
f̂(x+ z) |Az = 0

}
= f̂(x+∆xNt)

= f(x) +∇f(x)T∆xNt +
1

2
∆xNt∇2f(x)∆xNt.

(8.27)

From (8.21), we get that

∇f(x)T∆xNt = −
(
∆xT

Nt∇2f(x) +wTA
)
∆xNt

= −∆xT
Nt∇2f(x)∆xNt

= −λ2(x).

(8.28)

Combining (8.27), (8.28), and (8.25), we get (8.26).

Finally, the Newton decrement appears in the line search because

d

dt
f(x+ t∆xNt)

∣∣∣∣
t=0

= ∇f(x)T∆xNt = −λ2(x). (8.29)

8.4.5 Feasible descent direction

Suppose we are at the feasible point x. Then, z ∈ Rn is a feasible direction of movement

if Az = 0, and descent direction if, for sufficiently small t, f(x+ tz) < f(x).

The Newton step ∆xNt is always a feasible descent step, because

1. from the second system of equations of (8.17), we have that A∆xNt = 0,

2. due to (8.29), we have that, for sufficiently small t, f(x+ t∆xNt) ≤ f(x).

8.4.6 Newton’s algorithm starting from a feasible point

The Newton algorithm starting from a feasible point is presented in Table 8.1.

As we see in Fig. 8.1, if we start from a feasible point, x0, then, for k ≥ 0, the points xk

will remain feasible and the inequality f(xk) < f(xk−1) will hold true, for every k, unless

xk−1 = x∗.
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x0

xk

Ax = b

f(x) = p∗

domf

Figure 8.1: Trajectory x0, . . . ,xk of the Newton algorithm, starting from a feasible point.

x ∈ dom f, Ax = b, tolerance ǫ.

while (TRUE)

1. compute Newton step and decrement :∆xNt, λ(x).

2. quit if λ2(x) ≤ ǫ.

3. Perform backtracking line search and choose t.

4. x := x + t∆xNt.

Table 8.1: The Newton algorithm for problems with equality constraints starting from a

feasible point.

8.5 Convergence Analysis

The Newton method for problems with linear equality constraints, starting from a feasible

point, behaves like the Newton method for unconstrained optimization problems.

For details of the convergence analysis of the method see Section 10.2.4 of the book of

Boyd and Vandenberghe.

8.6 Newton algorithm starting from an infeasible point

Next, we will study the important case where we start the Newton algorithm from an

infeasible x ∈ dom f , that is, Ax 6= b.

This may happen either because the computation of a feasible point is difficult, for example,

when dom f ⊂ Rn, or for any other reason.
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8.7 Newton step at infeasible points

We repeat that the optimality conditions for the problem (8.1) are as follows:

∇f(x∗) +ATv∗ = 0, Ax∗ = b.

Let x ∈ dom f be a point which is not feasible, that is,

Ax 6= b.

Our goal is to find a step ∆x such that the point x + ∆x is feasible and approximately

optimal, that is,

A(x+∆x) = b, x+∆x ≈ x∗.

Replacing x∗ in the optimality conditions by x+∆x and v∗ by w, and using the first-order

approximation

∇f(x+∆x) ≈ ∇f(x) +∇2f(x)∆x, (8.30)

we obtain

∇f(x) +∇2f(x)∆x +ATw = 0, A(x+∆x) = b, (8.31)

or, equivalently, [
∇2f(x) AT

A O

][
∆x

w

]
= −

[
∇f(x)

Ax− b

]
. (8.32)

The only difference between the relation (8.32), which defines the Newton step at an

infeasible point, and the relation (8.17), which defines the Newton step at a feasible point,

is in the second term of the right-hand side, which is Ax− b in (8.32), while it is zero in

(8.17). If x is feasible, then the two terms are identical. If, however, x is not feasible, then

the two terms are different.

We note that if x is not feasible and we move along ∆x, then the new point x +∆x will

be feasible.

An extremely interesting case arises when x is not a feasible point but it is not possible

to move by ∆x, because dom f ⊂ Rn and x+∆x /∈ dom f . We will consider this case in

teh sequel.

8.7.1 Interpretation as primal–dual Newton step

Next, we give another interpretation of the relation (8.32) in the context of the algorithm

primal–dual, which updates both the primal variable x and the dual variable v with the

goal of solving the KKT conditions.
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Let the function r : Rn × Rp → Rn × Rp be defined as

r(x,v) := (rdual(x,v), rprimal(x,v)), (8.33)

with

rdual(x,v) := ∇f(x) +ATv, rprimal(x,v) := Ax− b. (8.34)

The optimality conditions (8.2) of the problem (8.1) can be expressed as

r(x∗,v∗) = 0. (8.35)

Quantities rdual(x,v) and rprimal(x,v) are denoted as, respectively, dual residual and

primal residual, at the point (x,v), and provide a measure of “how far the point (x,v)

is from the optimal point.”

The first-order approximation of the function r, at the point y = (x,v), is given by

r(y + z) ≈ ry(z) = r(y) +Dr(y)z, (8.36)

where Dr(y) is the derivative of r at y. Function ry(z) is an affine function of z.

We define as primal-dual Newton step

∆ypd := (∆xpd,∆vpd), (8.37)

at the point y, the point z where the right-hand side of (8.36) becomes equal to zero, i.e.,

Dr(y)∆ypd = −r(y). (8.38)

That is, the primal–dual Newton step is defined in terms of x and v.

The derivative Dr(y) = Dr(x,v) is as follows

Dr(x,v) =

[
Drdual(x,v)

Drprimal(x,v)

]
=

[
∇2f(x) AT

A O

]
, (8.39)

therefore, (8.38) can be expressed as
[
∇2f(x) AT

A O

][
∆xpd

∆vpd

]
= −

[
rdual(x,v)

rprimal(x,v)

]
= −

[
∇f(x) +ATv

Ax− b

]
. (8.40)

Setting v+ = v +∆vpd , we obtain the relation
[

∇2f(x) AT

A O

][
∆xpd

v+

]
= −

[
∇f(x)

Ax− b

]
, (8.41)

which is identical to (8.32) for

∆x = ∆xpd, w = v+ = v +∆vpd. (8.42)



8.7. NEWTON STEP AT INFEASIBLE POINTS 119

8.7.2 Merit function

We recall that the Newton direction, ∆x, at a infeasible point x is given by the relation

(8.31). The direction ∆x is not necessarily a descent direction for f , at the point x, because

quantity

d

dt
f(x+ t∆x)

∣∣∣∣
t=0

= ∇f(x)T∆x

(8.31)
= −∆xT

(
∇2f(x)∆x+ATw

)

(8.41)
= −∆xT∇2f(x)∆x + (Ax− b)Tw

(8.43)

is not necessarily negative (unless Ax = b). This fact has several consequences. For

example, we cannot speak of “descent Newton step,” with all its implications.

However, the interpretation of the quantity ∆ypd = (∆xpd,∆vpd) as primal–dual Newton

step allows the step ∆ypd to be related to another function.

The directional derivative of function ‖r‖22, at the point y along the direction ∆ypd, is
2

d

dt
‖r(y + t∆ypd)‖22

∣∣∣∣
t=0

= 2 r(y)TDr(y)∆ypd

= −2 r(y)T r(y)

= −2 ‖r(y)‖22
≤ 0.

(8.44)

So, the direction ∆ypd is a descent direction for the merit function ‖r‖22.

This fact allows the use of the quantity ‖r‖2 as a measure of progress of the Newton

method, starting from a non-feasible point, and can be used, for example, in a line search

and/or in algorithm termination criteria.

8.7.3 Full-Step Feasibility Property

As we have seen, if we are at an infeasible point and move by ∆xpd, then we will reach a

feasible point and we will remain at feasible points whether we take full steps (i.e., t = 1)

or not.

2From the chain rule, we have

D(g ◦ r ◦ c)(t) = Dg((r ◦ c)(t))D(r ◦ c)(t) = Dg((r ◦ c)(t))Dr(c(t))Dc(t).

Setting c(t) = y + t∆ypd , (r ◦ c)(t) = r( bfc(t)) and (g ◦ r ◦ c)(t) = ‖r(c(t)‖2, we get (8.44).
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x∗

x0

Ax = b

f(x) = p∗

domf

Figure 8.2: Trajectory x0, . . . ,x∗ of the Newton algorithm, starting from an infeasible

point.

If, however, we move by t∆xpd, with t ∈ (0, 1), then the new point will not be feasible. If

we define x+ = x+ t∆xpd, and v+ = v + t∆vpd, then

rprimal(x+,v+) = A(x+ t∆xpd)− b

(a)
= (1− t)(Ax− b)

= (1− t)rprimal(x,v),

(8.45)

where at point (a) we used the fact that, because of the relation (8.40), we have

A∆xpd = −(Ax− b).

Working recursively, we obtain

rprimal(xk,vk) =

(
k−1∏

i=0

(1− tk)

)
rprimal(x0,v0). (8.46)

Obviously, if, for some k, we have tk = 1, then the points xl, for l > k, will be feasible and

the primal residual will be zero.

8.7.4 Newton algorithm starting from an infeasible point

The Newton algorithm starting from an infeasible point is listed in Table 8.2 (see also Fig

8.2).

An obvious variation is as follows. If, at some step, we choose t = 1, then the next point

will be feasible and we can continue with the Newton algorithm starting from a feasible

point.



8.7. NEWTON STEP AT INFEASIBLE POINTS 121

x ∈ dom f,v ∈ Rp, tolerance ǫ.

Repeat

1. compute primal and dual Newton steps : ∆xpd,∆vpd.

2. Backtracking line search

t := 1

while ‖r(x+ t∆xpd,v + t∆vpd)‖2 > (1− αt)‖r(x,v)‖2
t := β t.

3. x := x + t∆xpd,v := v + t∆vpd.

until ‖r(x,v)‖2 ≤ ǫ.

Table 8.2: The Newton algorithm for problems with equality constraints starting from an

infeasible point (primal–dual).

The main difference between these two approaches lies in the line search. However, this

difference does not seem to significantly differentiate the behavior of the methods.

8.7.5 In practice: Newton method for convex problems with

affine equality constraints

As we have seen, if dom f ⊂ Rn, then finding a feasible point may be difficult. In this

case, one approach is to solve the problem in two phases.

In Phase I, we solve a feasibility problem. If this problem has a solution, then we can

proceed to Phase II, using the Newton algorithm starting from a feasible point.

If dom f is relatively simple and we know that the problem is feasible, then it may be

preferable to use the Newton algorithm starting from an infeasible point.

Example 8.7.1. Consider the problem

minimize f(x) = −∑n

i=1 log xi

subject to Ax = b,
(8.47)

with dom f = Rn
++. We can adopt the following approaches.

1. Find a point x0, if it exists, with x0 ∈ dom f and Ax0 = b, and, then, use the

Newton algorithm starting from a feasible point. Finding a feasible starting point
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requires the solution of the feasibility problem

minimize f(x) = 0

subject to Ax = b

x > 0.

(8.48)

We note that, for the moment, we do not know how to solve the problem (8.48),

because it contains inequalities (we will solve problems with inequality constraints

in the next chapter).

2. Start from an infeasible point x ∈ dom f , for example, x = 1, and use the primal–

dual algorithm.

3. Solve the dual problem (if it has a solution)

max
v

g(v) = −bTv +

n∑

i=1

log
(
ATv

)
i
+ n, (8.49)

and compute the solution of the primal problem via the solution of the dual. More

specifically, if v∗ is the solution of the dual problem, then

x∗,i = 1/
(
ATv∗

)
i
, for i = 1, . . . , n. (8.50)

�

We understand that, in general, there are many approaches for the solution of an opti-

mization problem. It is extremely important to know the pros and cons of each of them.

Then, we will be able to choose the most suitable.



Chapter 9

Convex Optimization Problems

In this chapter, we study convex optimization problems in their general form, that is,

convex minimization problems with convex inequality constraints and affine equality con-

straints.

There are several approaches for the solution of these important problems. We will focus

on the interior point method, stating that it is one of the most widespread methods for

solving (not very large) convex optimization problems.

9.1 Convex optimization problems

Consider the convex optimization problem

minimize f0(x)

subject to fi(x) ≤ 0, i = 1, . . . , m,

Ax = b,

(9.1)

where fi : dom fi ⊆ Rn → R, for i = 0, . . . , m, are convex, twice differentiable functions

(thus, dom fi, for i = 0, . . . , m, are open, convex sets), A ∈ Rp×n, with rank(A) = p, and

b ∈ Rp.

The set for which the problem (9.1) is defined is D :=
⋂m

i=0 dom fi, while the feasible set

is

X := {x ∈ D | fi(x) ≤ 0, i = 1, . . . , m, Ax = b}. (9.2)

We assume that the problem (9.1) has a solution, say, x∗, and define p∗ := f0(x∗). Further,

we assume that it is strictly feasible. That is, there exists x ∈ D such that Ax = b and

123
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fi(x) < 0, for i = 1, . . . , m (i.e., the Slater condition is satisfied). In this case, the KKT

conditions are necessary and sufficient optimality conditions.

If we define λ∗ := [λ∗,1 · · · λ∗,m]
T , then the KKT conditions are expressed as:

∇f0(x∗) +

m∑

i=1

λ∗,i∇fi(x∗) +ATv∗ = 0

Ax∗ = b

fi(x∗) ≤ 0, i = 1, . . . , m

λ∗ ≥ 0

λ∗,ifi(x∗) = 0, i = 1, . . . , m.

(9.3)

9.2 Interior Point Methods

Interior point methods solve problem (9.1) by solving a sequence of problems with affine

equality constraints. These problems are “approximations” of problem (9.1) and their

solutions are strictly feasible for the problem (9.1). Next, we describe the process.

9.2.1 Logarithmic barrier function

The problem (9.1) can be expressed as

minimize f0(x) +
m∑
i=1

I−(fi(x))

subject to Ax = b,
(9.4)

with

I−(u) :=

{
0, u ≤ 0,

∞, u > 0.
(9.5)

The cost function of the problem (9.4) is, in general, non-differentiable, therefore, gradient

or Newton methods cannot be used for its solution.

An approximation of the function I−(u) is Î−(u), which is defined as

Î−(u) := −1

t
log(−u), (9.6)

with dom Î− = −R++ and t > 0. The parameter t determines the approximation quality

(see Figure 9.1). The function Î− is convex and closed (it tends to infinity when u tends

to 0) and it will be extremely useful in the sequel.
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Figure 9.1: Approximations of the function I (u), for t = 1, 10, 30.

First, we define the logarithmic barrier function for the problem (9.1)

φ(x) := −
m∑

i=1

log(−fi(x)), (9.7)

with domφ = {x ∈ ⋂m

i=1 dom fi | fi(x) < 0, i = 1, . . . , m}. As we will prove next, the

function φ is convex. Moreover, it is twice differentiable.

Next, we define the optimization problem

minimize f0(x) +
1
t
φ(x)

subject to Ax = b,
(9.8)

for x ∈ dom f0 ∩ dom φ and t > 0.

Adding the function 1
t
φ(x) to the cost function f0(x), intuitively, “raises a barrier” on the

boundary of the feasible set X, essentially “trapping” the solution of the problem (9.8)

inside X (but allowing it to reach “very close” to its boundary, for “big” t).

The problem (9.8) is convex and the Newton algorithm for problems with affine equality

constraints can be used for its solution. Obviously, other algorithms can be used as well.

We will focus on the Newton algorithm.
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Figure 9.2: Functions f(x) + 1
t
φ(x), for t = 1, 10, 100.

Example 9.2.1. Consider the simple optimization problem with inequality constraints

minimize f0(x) =
1
x

subject to 0.5 ≤ x ≤ 2.
(9.9)

The function φ(x) in this case is given by

φ(x) = − log(−(x− 2))− log(−(0.5− x)). (9.10)

In Figure 9.2, we plot the function f(x) + 1
t
φ(x), for t = 2, 10, 100. We observe that, as t

increases, the function f(x) + 1
t
φ(x) approaches f(x) except at the endpoints of the line

interval [0.5, 2] where it increases sharply, forming a “barrier.” �

Next, we study the problem

minimize tf0(x) + φ(x)

subject to Ax = b
(9.11)

which is equivalent to the problem (9.8).

The first and second derivatives of φ(x) are as follows:

∇φ(x) =
m∑

i=1

1

−fi(x)
∇fi(x),

∇2φ(x) =

m∑

i=1

1

f 2
i (x)

∇fi(x)∇fi(x)
T −

m∑

i=1

1

fi(x)
∇2fi(x).

(9.12)
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From the form of ∇2φ(x) and the fact that fi(x) < 0 for x ∈ domφ, we easily see that

φ(x) is a convex function (because its Hessian is non-negative definite).

9.2.2 Central Path

We assume that, for t > 0, there is a solution to the problem (9.11), say, x∗(t) (hence,

f0(x∗(t)) > −∞.) The function of t, x∗(t), is called central path, while each point of the

central path is called central point.

If x∗(t) is a central point, then there exists v̂ ∈ Rp that satisfies the KKT conditions for

the problem (9.11), that is,

t∇f0(x∗(t)) +∇φ(x∗(t)) +AT v̂ = 0, Ax∗(t) = b, (9.13)

or, equivalently,

t∇f0(x∗(t)) +
m∑

i=1

1

−fi(x∗(t))
∇fi(x∗(t)) +AT v̂ = 0, Ax∗(t) = b. (9.14)

Moreover, x∗(t) ∈ dom f0 ∩ domφ, therefore,

fi(x∗(t)) < 0, for i = 1, . . . , m. (9.15)

9.2.3 Dual feasible points from central path points

From (9.14), we can draw the following important conclusion about the central path. Each

central point, x∗(t), defines a dual feasible point for the problem (9.1) and, thus, a lower

bound for p∗. More specifically, define

λ∗,i(t) := − 1

tfi(x∗(t))
, for i = 1, . . . , m, v∗(t) =

v̂

t
. (9.16)

It can be shown that the point (λ∗(t),v∗(t)), with λ∗(t) := [λ∗,1(t) · · · λ∗,m(t) ]
T , is a dual

feasible point for the problem (9.1).1

The proof is as follows. By definition, we have that λ∗(t) > 0, because t > 0 and fi(x∗(t)) <

0, for i = 1 . . . , m.

The relation (9.14) can be expressed as

∇f0(x∗(t)) +

m∑

i=1

λ∗,i(t)∇fi(x∗(t)) +ATv∗(t) = 0. (9.17)

1We recall that a point (λ,v) is dual feasible if λ ≥ 0 and g(λ,v) > −∞.
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The Lagrangian for the problem (9.1) is

L(x,λ,v) = f0(x) +
n∑

i=1

λifi(x) + vT (Ax− b). (9.18)

Let λ = λ∗(t) and v = v∗(t). Then, we know that

g(λ∗(t),v∗(t)) = inf
x∈D

L(x,λ∗(t),v∗(t)). (9.19)

The function L(x,λ∗(t),v∗(t)) is a convex function of x (why?). Therefore, a necessary

and sufficient condition for its minimization over the open set D is

∇xL(x,λ∗(t),v∗(t)) = 0. (9.20)

We easily see that, due to (9.17), x∗(t) satisfies (9.20) and, therefore, minimizes function

L(x,λ∗(t),v∗(t)).

The dual function at point (λ∗(t),v∗(t)) is

g(λ∗(t),v∗(t)) = L(x∗(t),λ∗(t),v∗(t))

= f0(x∗(t)) +
m∑

i=1

λ∗,i(t)fi(x∗(t)) + v∗(t)
T (Ax∗(t)− b)

(9.16)
= f0(x∗(t))−

m

t
.

(9.21)

Since f0(x∗(t)) > −∞, we have that g(λ∗(t),v∗(t)) > −∞. So, the pair (λ∗(t),v∗(t)) is a

dual feasible point for the problem (9.1). Therefore,

g(λ∗(t),v∗(t)) ≤ p∗. (9.22)

Combining the relations (9.21) and (9.22), we obtain the very important inequality

f0(x∗(t))− p∗ ≤
m

t
. (9.23)

That is,

1. for a given t, the point x∗(t) is at most m
t
–suboptimal for the problem (9.1),

2. for t → ∞, x∗(t) converges to an optimal point for the problem (9.1).
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9.2.4 Interpretation via KKT

We have seen that relations

Ax = b, fi(x) ≤ 0, i = 1, . . . , m

λ ≥ 0

∇f0(x) +
m∑

i=1

λi∇fi(x) +ATv = 0

λifi(x) = −1

t
, i = 1, . . . , m

(9.24)

are satisfied by x∗(t), λ∗(t), and v∗(t).

The relations (9.24) are the KKT conditions for the problem (9.1), with the only difference

being that, instead of zero in the right-hand side of the fourth line, there is the term −1
t
.

Therefore, for “large” t, x∗(t), λ∗(t), and v∗(t) “almost” satisfy the KKT conditions for

the problem (9.1).

9.3 The Barrier Method

We have seen that the point x∗(t) is at most m
t
–suboptimal for the problem (9.1). An

approach for the solution of (9.1), with tolerance ǫ, is to solve the problem

minimize m
ǫ
f0(x) + φ(x)

subject to Ax = b.
(9.25)

In general, this problem is hard to solve for “small” ǫ. An efficient approach for the solution

of problem (9.25) is the iterative solution of problems of the form (9.11), with increasing

t. The solution of the problem for a particular t is the starting point for the next problem

(with a larger t).

This method, which is called the barrier method, is described in Table 9.3. It was originally

proposed by Fiacco and McCormick in the 1960s. But, during the next decade, it was not

widely accepted mainly because there were arguments against the numerical stability of

the method. For example, for large t, the condition number of the second derivative of the

function tf0 + φ is very large, which was expected to lead to difficulties in the numerical

implementation of the method.
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The method reappeared during the 1980s, when it was associated with Karmakar’s algo-

rithm for the solution of linear programming problems. Recently, it has been one of the

most popular approaches for the solution of (not very large) convex optimization problems.

x ∈ dom f0 ∩ domφ, Ax = b, t > 0, µ > 1, tolerance ǫ > 0.

repeat

1. Compute x∗(t), by minimizing tf0 + φ subject to Ax = b, starting at x.

2. x := x∗(t).

3. quit if m
t
< ǫ.

3. t := µ t.

Table 9.1: Barrier method for convex optimization problems.

9.4 Feasibility and Phase I

One approach towards finding an initial feasible point for the problem (9.1) is the solution

of the feasibility problem

minimize s

subject to fi(x) ≤ s, i = 1, . . . , m

Ax = b,

(9.26)

with optimization variables x ∈ Rn and s ∈ R (we recall that A ∈ Rp×n and b ∈ Rp).

If there exists x such that Ax = b, say, x̄, then the problem (9.26) is always strictly

feasible, because we can put as initial point the vector (x̄, s̄) with

s̄ > max{f1(x̄), . . . , fm(x̄)}. (9.27)

If p < n, then the system Ax = b has infinite solutions (recall that we have assumed

that the rows of A are linearly independent). One solution is given by the relationship

x̄ = A♯b, where A♯ is the pseudoinverse of A .

Let x̄∗ be the optimal point of the problem (9.26) and p̄∗ the optimal value. Then

1. if p̄∗ > 0, then the problem (9.1) is infeasible.

2. if p̄∗ < 0, then the problem (9.1) is feasible and a feasible point for problem (9.1) is

x̄∗.
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3. if p̄∗ = 0, then the problem is not strictly feasible. In practice, it may happen that

|p̄∗| < ǫ, for very small ǫ > 0. Then, the inequalities fi(x) ≤ −ǫ, for i = 1, . . . , m,

are infeasible, while the inequalities fi(x) ≤ ǫ, for i = 1, . . . , m, are feasible.

We note that it is not necessary to solve the problem (9.26). It suffices to find an x which

leads to s < 0.

9.5 Primal–Dual Interior Point Method

9.5.1 Primal–dual direction

We define

f(x) :=




f1(x)
...

fm(x)


 , Df(x) :=




∇f1(x)
T

...

∇fm(x)
T


 . (9.28)

We define the vector rt(x,λ,v) as follows:

rt(x,λ,v) :=




∇f0(x) +Df(x)Tλ+ATv

−diag(λ)f(x)− 1
t
1m

Ax− b


 . (9.29)

If x ∈ dom f0 ∩ domφ, λ > 0, and v satisfy the equation rt(x,λ,v) = 0, then x = x∗(t),

λ = λ∗(t), and v = v∗(t).

In particular, x∗(t) is a primal feasible point and (λ∗(t),v∗(t)) is a dual feasible point, with

duality gap m
t
.

Suppose we are at the point y = (x,λ,v), with x ∈ dom f0 ∩ domφ and λ > 0.

The vector

rt,d(y) := ∇f0(x) +Df(x)Tλ+ATv (9.30)

is called dual residual, the vector

rt,p(y) := Ax− b (9.31)

is called primal residual, while the vector

rt,c(y) := −diag(λ)f(x)− 1

t
1m, (9.32)
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where 1m is the m-dimensional vector with unit elements, is called centrality residual.

The first-order approximation of rt, at the point y, is as follows:

rt(y + z) ≈ rt,y(z) = rt(y) +Drt(y)z. (9.33)

We define as the Newton step ∆y = (∆x,∆λ,∆v), at the point y, the vector z for which

rt,y(z) vanishes, i.e.

Drt(y)∆y = −rt(y). (9.34)

Calculating the derivative Drt, at the point y, we obtain




∇2f0(x) +
∑m

i=1 λi∇2fi(x) Df(x)T AT

−diag(λ)Df(x) −diag(f(x)) O

A O O







∆x

∆λ

∆v


 = −




rt,d(y)

rt,c(y)

rt,p(y)


 . (9.35)

We define as primal-dual search direction, ∆ypd := (∆xpd,∆λpd,∆vpd), the Newton

step ∆y.

The variables xk and (λk,vk) of the primal–dual interior point algorithm are not necessarily

feasible points of the problem (9.1), but only asymptotically (i.e., at the convergence of the

algorithm). This means that we have no obvious way to compute the duality gap during

algorithm execution.

For x ∈ dom f0 ∩ dom φ and λ > 0, we define the surrogate duality gap as

η̂(x,λ) := −f(x)Tλ. (9.36)

The quantity η̂(x,λ) would be equal to the duality gap (= m
t
) if x and λ were feasible

points for the problem (9.1).

The value of t which corresponds to the surrogate duality gap η̂ equals m
η̂
.

9.5.2 Line search

Let

x+ := x+ s∆xpd, λ+ := λ+ s∆λpd, v+ := v + s∆vpd. (9.37)

A line search method should guarantee that λ+ > 0, f(x+) < 0 and the function ‖r(·)‖2
decreases quite a bit (see Boyd & Vandenberghe, page 613). We proceed as follows:

1. Compute the quantity smax := sup{s ∈ [0, 1] |λ+ s∆λ > 0}.
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2. Backtrack by β ∈ (0, 1) until f(x+) < 0.

3. Backtrack by β ∈ (0, 1) until

‖rt(x+,λ+,v+)‖2 ≤ (1− αs)‖rt(x,λ,v)‖2 (9.38)

for a ∈ (0, 0.5).

The relation (9.38) is compatible with the backtracking line search we have encountered

in previous algorithms. Thus, it can be shown that backtracking line search will always

terminate after a finite number of steps.

9.5.3 Primal-dual algorithm for convex optimization problems

The primal-dual algorithm is presented next. We note that we should start from a point

that strictly satisfies all inequality constraints.

x ∈ dom f0 ∩ domφ, λ > 0, t > 0, µ > 1, ǫfeas > 0, ǫ > 0.

repeat

1. t := µ m
η̂
.

2. Compute ∆ypd.

3. perform line search and choose step s.

4. y := y + s∆ypd.

until (‖rp‖2 < ǫfeas, ‖rd‖2 < ǫfeas, η̂ < ǫ) .


