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Today 

• Machine Learning 

– supervised 

– unsupervised 

– reinforcement 

– theory 

• Examples 

– hand-written digit recognition 

– polynomial curve-fitting 

– … 



Machine Learning 
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Machine Learning 

• Supervised Learning 
– set of training data with inputs and targets 

– classification, regression, … 

• Unsupervised Learning 
– set of training data with inputs, but without targets 

– clustering, density estimation, dimensionality reduction, … 

• Reinforcement Learning 
– set of training trials of interaction with feedback by a critic 

– value function, decision policy, exploration vs. exploitation, … 

• Learning Theory 
– theoretical investigations: what can be learned? how fast? 



Examples 
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Hand-Written Digit Recognition 

input: digital image (28x28 pixels) 

target: label 0, 1, 2, 3, 4, 5, 6, 7, 8, or 9 
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Hand-Written Digit Recognition (cnt’d) 

• Data 

– training: set of hand-written digit images with correct labels 

– test: examples similar to the training set 

• Model Selection 

– input x, output y(x) 

– generalization 

• Learning 

– training phase 

– test phase 

– cross-validation 
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Hand-Written Digit Recognition (cnt’d) 

•MINST Data Set 

–60000 training examples 

–10000 test examples 

 

–normalized to 20x20 

–fit to 28x28 square 
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Hand-Written Digit Recognition (cnt’d) 

• Feature Extraction/Selection 

– preprocessing: translation and scaling to fit into a fixed box 

– reduction of the variability within each class 

– transformation to a space where the problem may be easier 

• Dimensionality Reduction 

– reduce the dimensionality of the problem for speed-up 

– a set of carefully selected features instead of images 

– critical information may be discarded! 
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Polynomial Curve Fitting  
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Sum-of-Squares Error Function 

It is a function minimization problem! Easy, because the derivative is a linear function of w! 



M. G. Lagoudakis         TUC ECE, Machine Learning, Spring 2023       Page 13 

0th Order Polynomial 
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1st Order Polynomial 
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3rd Order Polynomial 
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9th Order Polynomial 
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Over-Fitting 

Root-Mean-Square (RMS) Error: 

|training| = 10 examples 

|test|=100 examples 
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Polynomial Coefficients   
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Data Set Size:  

9th Order Polynomial 
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Data Set Size:  

9th Order Polynomial 
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Regularization 

• Penalize large coefficient values 

 

 

 

 

• where 
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Regularization:  
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Regularization:  
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Regularization:           vs.  
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Polynomial Coefficients   
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Heart Abnormalities 
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Machine Learning Approach 
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Predicting the Scoring of Goals 



M. G. Lagoudakis         TUC ECE, Machine Learning, Spring 2023       Page 29 

Real-Time Image Segmentation 
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Segmented Image (cars, signs, road, …) 



Graduate Course on 

Machine Learning 

Lecture 02 

Linear Regression 
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Today 

• Regression 

• Basis functions 

– polynomial, Gaussian, sigmoidal 

• ML Least-Squares 

• Sequential learning 

• Regularization 

• Multi-Dimensional Output 

 



Regression 
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Regression 

• Given 
– a training data set of N observations of x: {x1, x2, …, xN} 

– together with the corresponding target values: {t1, t2, …, tN} 

• Goal 
– a function y(x) that predicts the target value t for any input x 

– a predictive distribution p(t|x) over values of t for any input x  

• Objective 
– minimization of a loss function (e.g. the squared loss) 

• Common model choice 
– linear combinations of (non-linear) basis functions 

– limited in high dimensions, but with nice analytical properties 
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Example: Polynomial Curve Fitting  



Basis Functions 
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Basis Function Models 

• Linear model 

 

 
– Áj(x) are known as basis functions (may be non-linear) 

– wj are known as parameters or weights 

• Bias parameter 
– typically, Á0(x) = 1, so that w0 acts as a bias (DC component) 

• Simplest case 
– linear basis functions, one per dimension: Ád(x) = xd 

– imposes significant limitations on the model 
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Polynomial Basis Functions 

global: a small change in x 
affects all basis functions 

spline functions: separate 
regions with different 
polynomials in each region 
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Gaussian (Radial) Basis Functions 

local: a small change in x 
only affects nearby basis 
functions 

¹j’s control location 

s controls scale (width) 
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Sigmoidal Basis Functions 

local: a small change in x 
only affects nearby basis 
functions 

¹j’s control location 

s controls scale (slope) 
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Other Basis Functions 

• Fourier series 

– expansion in sinusoidal functions 

– each basis function represents a specific frequency 

– each basis function has an infinite spatial extent 

• Wavelets 

– sinusoidal basis functions 

– localized in both space and frequency 

– mutually orthogonal 

– applicable mainly when the input lives on a regular lattice 
• successive time points in a temporal sequence 

• image pixels 



ML Least-Squares 
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Sum-of-Squares Error Function 
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Fitting a 3rd Order Polynomial 
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Likelihood 
• Observations  

– assume deterministic function with added Gaussian noise 
 

 

• Given 

– observed inputs 

– observed targets 

– basis functions 

• Likelihood 

where 
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Log Likelihood 

– taking the logarithm, we get 

 

 

 

 

 

 

– where 

 

 

– is the sum-of-squares error 
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– setting the gradient to zero 

 

 

– solving for w  

 

 

– design matrix 

Maximization for w 

The Moore-Penrose 
pseudo-inverse,        
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– maximizing with respect to the bias, w0, alone 

 

 

 

– setting the derivative to zero and solving for w0  

 

 

 

 

 

– difference between the average of the target values and the 
weighted sum of the averages of the basis function values 

Maximization for the Bias 
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Maximization for ¯ 

– maximizing with respect to ¯ 
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Predictive Distribution 
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Geometry of Least Squares 

Consider 

 

 

 

 

 

S is spanned by                     

wML minimizes the distance 
between t and its orthogonal 
projection on S, i.e. y 

N-dimensional 
M-dimensional 



Sequential Learning 
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Sequential Learning 

• Sequentiality 

– data items considered one at a time (online learning)   

• Approach 
– use stochastic (sequential) gradient descent (with error En ) 

 

– for the sum-of-squares error function 

 

– known as the least-mean-squares (LMS) algorithm 

• Issues 

– iterations? convergence? how to choose ´? 



Regularization 
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Regularized Least Squares 

• Regularized error function 
 

 

• Squared error 

– sum-of-squares error function 

– quadratic regularizer (weight decay) 

 

 

• Least squares solution 

Data term + Regularization term 

¸ is called the 
regularization 
coefficient 
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General Regularizer 

Lasso Quadratic 
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Lasso Sparsity 



Multi-Dimensional Output 
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Multi-Dimensional Output 

• Isotropic Gaussian in K dimensions 

 

• Given  

– observed inputs 

– observed targets 

– basis functions 

• Log likelihood function 
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Multi-Dimensional Maximum Likelihood 

• Maximization for W 

 

 

• Single target variable tk 

 

 

 

• Observations 

– the solution decouples between the different target variables 

– similarly, for general Gaussian noise distributions 
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Today 

• Bias-Variance 

• Decomposition 

 



Bias-Variance 
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Decision Theory for Regression 

• Inference Step 

– determine p(x,t) 

• Decision Step 

– for any given x, make optimal prediction y(x) 

• Loss 

– loss function L(t,y(x)) 

• Expected Loss 
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Regression Function 
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The Squared Loss Function 

 

 

– algebraic manipulation of the square 

 

 
– substituting back and integrating over t (cross-term vanishes) 

 

 

– only the first term depends on y(x); for minimization of loss: 
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The Squared Loss Function 
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A Closer Look 

• Expected Squared Loss 

 

 

 

 

 

– The second term of E[L] corresponds to the noise inherent 

in the random variable t, is independent of y(x), and 
represents the minimum achievable expected loss value.  

– h(x) is the optimal prediction (the conditional expectation) 

– What about the first term? 
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Expectation over Multiple Data Sets 

– suppose we were given multiple data sets, each of size N 

– any particular data set, D, gives a particular function y(x;D) 

– let’s expand the integrand in the first term 

 

 

 

 

– taking the expectation over D, the last term vanishes  



Bias-Variance Decomposition 
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The Bias-Variance Decomposition 

– bias: difference of average prediction over all data sets from best 

– variance: variability of individual set predictions around average 

• Trade-off λ between bias and variance 

– flexible models: low bias and high variance 

– rigid models: high bias and low variance 
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Bias-Variance Example (rigid) 

– 100 data sets from h(x)=sin(2πx) with 25 data points each 

– model: 25 basis functions (24 Gaussian + 1 bias) 

– varying the degree of regularization  ̧: rigid model 
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Bias-Variance Example (balanced) 

– 100 data sets from h(x)=sin(2πx) with 25 data points each 

– model: 25 basis functions (24 Gaussian + 1 bias) 

– varying the degree of regularization  ̧: balanced model 
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Bias-Variance Example (flexible) 

– 100 data sets from h(x)=sin(2πx) with 25 data points each 

– model: 25 basis functions (24 Gaussian + 1 bias) 

– varying the degree of regularization  ̧: flexible model 
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The Bias-Variance Trade-off 

•over-regularized model 
–large ¸ 

–high bias 

–low variance 

•under-regularized model  
–small ¸ 

–low bias 

–high variance 
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Today 

• Bayesian Probability 

– frequentist vs. Bayesian 

– ML Gaussian density estimation 

– ML polynomial curve fitting 

– Bayesian polynomial curve fitting 

• Bayesian Linear Regression 

– Gaussian prior 

– Bayesian linear regression example 

– Bayesian linear regression predictive distribution 



Bayesian Probability 
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Towards Bayesian Probability 

• Frequentist probability 
– frequencies of random, repeatable events 

• Considerations 
– can we reason about rare, non-repeatable events? 

– example: will the Arctic ice cap disappear in 1000 years? 

– what if we have some idea about the rate of ice melting? 

– what if this knowledge is revised after 100 years? 

– need to quantify uncertainty 

– need to make revisions in light of new evidence 

• Bayesian probability 
– quantification and revision of uncertainty  
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Bayesian Thinking 

– blue box most likely chosen, before looking at fruit (prior) 

– red box most likely chosen, after picking an orange (posterior) 

Apples and Oranges 

posterior  likelihood × prior 
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Bayesian Thinking 

– what if we start with a belief about w? (prior) 

– what if we update our belief, after given the data? (posterior) 

Polynomial Curve Fitting 

posterior  likelihood × prior 
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Likelihood Function 

• Likelihood function 

– how like are some data D, given the parameters w 

– not a probability distribution over w! 

• Frequentist view 

– w is a fixed parameter, whose value is estimated 

– uncertainty as error bars from possible data sets D 

• Bayesian view 

– the observed data set D is the most probable data set 

– uncertainty as a probability distribution over w 
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Frequentists vs. Bayesians 
• Frequentist approach 

– maximum likelihood estimator for maximizing likelihood of data 

– or minimizing error function (negative log of the likelihood) 

– bootstrap method for variability in parameter estimation 

– predictions may be misled (e.g. three coin tosses, all heads) 

• Bayesian approach 

– makes smoother predictions (e.g. three coin tosses, all heads) 

– incorporates knowledge in the prior (truth or convenience?) 

– reducing dependence on the prior (non-informative priors) 

– difficulty: marginalization over the entire parameter space 

– recent advancement: sampling/approximation methods 
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Gaussian Parameter Estimation 

Likelihood function 

x: set of i.i.d. data 
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Maximum (Log) Likelihood 

• Likelihood 

 

 

• Log likelihood 

 

 

– differentiate with respect to ¹ and ¾ and set to 0 for maximum 

the sample mean the sample variance 
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Properties of          and  

Unbiased variance estimate 



M. G. Lagoudakis         TUC ECE, Machine Learning, Spring 2023       Page 12 

Curve Fitting Re-visited 
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ML Curve Fitting 

Determine            by minimizing sum-of-squares error,              

Replace            and determine               

• Likelihood 

 

• Log likelihood 
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Predictive Distribution 
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• Prior 

 

• Likelihood 

 

• Posterior 

 

• Maximum posterior 

– equivalently, minimize the negative log of the posterior 

MAP: A Step towards Bayes 

Determine               by minimizing the regularized sum-of-squares error,              
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Bayesian Curve Fitting 

Given: points x, targets t                    Goal: predict t at point x 
 

Sum out w (to avoid a point estimate) for a fully Bayesian treatment 

The predictive distribution is Gaussian and can be found analytically 

Both the mean and the variance depend in the query point x  
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Bayesian Predictive Distribution 



Bayesian Linear Regression 
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Bayesian Linear Regression (general) 

• Conjugate prior over w 

 

• Likelihood 

 

• Posterior  

 

 

• Reminder: Bayes’ Theorem for Gaussians 
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Bayesian Linear Regression (specific) 

• Common conjugate prior over w 

 

• Likelihood 

 

• Posterior  

 

 

• Reminder: General case 
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Bayesian Linear Regression Example 

0 data points observed 

Prior Data Space 



M. G. Lagoudakis         TUC ECE, Machine Learning, Spring 2023       Page 22 

Bayesian Linear Regression Example 

1 data point observed 

Likelihood Posterior Data Space 
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Bayesian Linear Regression Example 

2 data points observed 

Likelihood Posterior Data Space 
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Bayesian Linear Regression Example 

20 data points observed 

Likelihood Posterior Data Space 
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Predictive Distribution 

• Goal 
– predict t for new values of x by integrating over w 
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Predictive Distribution Example 

– sinusoidal data, 9 Gaussian basis functions, 1 data point 
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Predictive Distribution Example 

– sinusoidal data, 9 Gaussian basis functions, 2 data points 
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Predictive Distribution Example 

– sinusoidal data, 9 Gaussian basis functions, 4 data points 
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Predictive Distribution Example 

– sinusoidal data, 9 Gaussian basis functions, 25 data points 
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Today 

• Bayesian Model Comparison 

– model evidence 

– model trade-off 

• The Evidence Approximation 

– maximization of the evidence function 

– effective number of parameters 

 



Bayesian Model Comparison 
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Model Comparison 

• Question 
– how to choose the right model for training? 

– polynomial? Gaussian? sigmoidal? order? number? 

• Considerations 
– overfitting vs. generalization, bias vs. variance 

• Classical Approach 
– cross-validation: multiple runs with different subsets of data 

• Alternative Approach 
– marginalization over model parameters 

– avoids point estimates of model parameters 

– avoids multiple runs; models compared directly on the data 
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Bayesian Model Comparison 

• Question 

– how do we choose the right model? 

• Problem 

– compare models Mi, i=1, …, L, using data set D 

 

 

 

– Bayes factor: ratio of model evidence for two models 

Posterior Prior model evidence or 
marginal likelihood 
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Bayesian Model Comparison 

• Predictive distribution 
– having computed the posterior p(MijD), …  

– … we can compute the predictive (mixture) distribution 

 

 

 

• Simple approximation 

– known as model selection 

– simply use the model with the highest posterior 
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Model Evidence 

• Model evidence 
– given a model with parameters w, … 

– … we get the model evidence by marginalizing over w 

 

 

• Observation 

– the model evidence is the normalizer in Bayes posterior 
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Approximating the Posterior 

For a given model with a 
single parameter, w, 
consider the approximation 

 

 

 

 

where the prior is assumed 
to be flat and the posterior 
is assumed to be sharply 
peaked around wMAP.  



M. G. Lagoudakis         TUC ECE, Machine Learning, Spring 2023       Page 9 

Model Trade-Off 

• Log Posterior 

– taking the logarithm of the approximation 
 

 

 

– first term: fit to the data, given the most probable parameters 

– second term: penalty according to model complexity 

• Multiple parameters 
– for M parameters, having the same ratio                                    

negative 

negative and linear in M 
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Trade-Off in Model Evidence 

• matching data and model complexity 
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Bayesian Model Comparison 

• Assumption 

– the true data distribution is contained in considered models 

• Principle 

– Bayesian model comparison will favor the correct over others 

• Bayes factor 

– for a single data set, it may be larger for some incorrect model 

– however, the expected Bayes factor will favor the correct one 

 

 

– an example of the Kullback-Leibler (KL) divergence 



The Evidence Approximation 
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Recall: Bayesian Linear Regression 

– assuming basis Á(x) and zero-mean, isotropic prior over w… 

– … the predictive distribution over t for new values of x is 
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The Evidence Approximation 

• Fully Bayesian predictive distribution 
 

 

– all parameters marginalized, but the integral is intractable 

• Evidence approximation 

 

 

– where              is the mode (MAP) of the posterior               

– the posterior is assumed to be sharply peaked 

– fixed values obtained by maximizing the marginal likelihood 

– empirical Bayes, type II or generalized maximum likelihood 
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Maximum Marginal Likelihood 

– from Bayes’ theorem 

 

– assume p(®,¯) to be flat 

 

 

– using properties of Gaussian integrals 

– using linear basis functions 

 
 

– [derivation on the next slide] 
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Derivation 
– manipulate 

 

 
– complete the square 

 
 

 

– integrate 

 

 

 
– take the logarithm 
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Maximum Marginal Likelihood Example 

• sinusoidal data, basis functions: M   th degree polynomial 

 

best model! 



M. G. Lagoudakis         TUC ECE, Machine Learning, Spring 2023       Page 18 

Recall: Polynomial Curve Fitting 
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Maximizing the Evidence Function 
 

 

• Maximization (MAP) 
– to maximize                          with respect to ® and ¯, … 

– … differentiate                          w.r.t. ® and ¯, … 

– … and set the results to zero 

• Consideration 

– define the eigenvector equation  

– then the matrix  

 
– has eigenvalues  ¸i + ® 
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Maximizing over ®  
 

 

 

– differentiate                          w.r.t. ® and set to zero 

γ depends on both ® and ¯ 
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Maximizing over ¯  
 

 

 

– differentiate                          w.r.t. ¯ and set to zero 

– the eigenvalues ¸i are proportional to ¯ : 



M. G. Lagoudakis         TUC ECE, Machine Learning, Spring 2023       Page 22 

Maximizing the Evidence Function 

• Iterative maximization 
– give arbitrary values to ® and ¯  and iterate until convergence 

– step I: given ® and ¯, compute γ and mN 

 

 

 

– step II: given γ and mN, compute ® and ¯  
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Effective Number of Parameters 

Likelihood 

Prior 

                       (ratio in γ  0)  
w1 is not well 
determined by the 
likelihood 
 

                       (ratio in γ  1)  
w2 is well determined 
by the likelihood 
 
γ is the number of  
well determined 
parameters 
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Bias Correction in the Mean 

• Bayesian estimation 
 

 

• ML estimation 
 

 

• Recall: Gaussian variance estimation 
 

– biased 
 

– unbiased 

excludes the number 
of effective parameters 
in the normalization! 
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Effective Number of Parameters Example 
• sinusoidal data, 9 Gaussian basis functions and bias (M=10)  

• ¯ = 11.1 (true value) 

optimal value 
from evidence 
approximation 
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Test  set error 

Effective Number of Parameters Example 
• sinusoidal data, 9 Gaussian basis functions and bias (M=10)  

• ¯ = 11.1 (true value) 

optimal value 
from evidence 
approximation 

best generalization 
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Effective Number of Parameters Example 
• sinusoidal data, 9 Gaussian basis functions and bias (M=10)  

• ¯ = 11.1 (true value), 0  ®  + which implies that 0  γ  M 
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Evidence Approximation in Practice 

• Large data sets 
– in the limit                  , γ = M because of large eigenvalues 

– we can consider using the easy-to-compute approximation  

 

 

 

 

 

 

– no evaluation of the eigenvalue spectrum required 
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Limitations of Fixed Basis Functions 

• Curse of dimensionality 
– M basis functions along each dimension 

– a D-dimensional input space requires MD basis functions! 

• Considerations 

– data typically lie in a non-linear manifold of lower dimension 

– targets occasionally depend only on a few input variables 

• Question 

– can we choose fewer basis functions using the training data? 

– can we actively localize the basis functions in input space? 
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Today 

• Gaussian 

– geometry, properties, forms 

• Partitioned Gaussian 

– conditional and marginal 

• Bayes’ Theorem 

– for Gaussian variables 

• Application 

– Bayesian Linear Regression 

– Predictive Distribution 



Gaussian Distributions 
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The Gaussian (Normal) Distribution 
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Geometry of the Multivariate Gaussian 
Δ : the Mahalanobis distance from μ to x 

D : the number of dimensions, i = 1, 2, …, D 
Σ : symmetric matrix with real eigenvalues λi 
ui : eigenvectors of Σ (orthonormal basis) 
U : orthogonal matrix, eigenvectors in rows 
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Properties of the Multivariate Gaussian 

new coordinate system 

Jacobian matrix J 

in the old coordinates 

in the new coordinates 

normalized distribution 
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Moments of the Multivariate Gaussian 

(thanks to anti-symmetry of z, the z-term vanishes)  

(the two z-terms vanish) 
(the μμT-term is constant)  

(the yiyj-terms vanish, unless i=j)  

(the zzT-term)  
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Forms of the Multivariate Gaussian 

– D in μ and D(D+1)/2 in Σ, a total of D(D+3)/2 parameters  

– many parameters for large D and still unimodal 

• Diagonal Σ 

– D in μ and D in Σ = diag(σi
2), a total of 2D parameters 

• Isotropic Σ 

– D in μ and 1 in Σ = σ2I, a total of D+1 parameters 



Partitioned Gaussian Distributions 
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Partitioned Gaussian Distributions 

– if two sets of variables are jointly Gaussian … 

– … so is the conditional distribution of one on the other 

– … so is the marginal distribution of either set 

precision matrix 

partitioning 

joint set 
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Exponent of the Gaussian 
completing the square! 
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Partitioned Conditional Gaussian 

(Schur complement) 
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Exponent of the Gaussian (again) 
completing the square! 



M. G. Lagoudakis         TUC ECE, Machine Learning, Spring 2023       Page 15 

Partitioned Marginal Gaussian 

(unnormalized Gaussian, integral 
independent of the mean and thus of xa, 

evaluates to the reciprocal of the normalizer) 

(aim to integrate out xb) 

(terms with xb) 

(still have to consider this,  
depends only on xa, not xb) 
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Partitioned Marginal Gaussian 

(from previous page) 

(+ other terms with xa) 

(2nd order term of xa) 

(1st order term of xa) 

completing the square now for xa! 
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Partitioned Gaussians Summary 
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Partitioned Gaussians Example 



Bayes’ Theorem for Gaussians 
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Linear Gaussian Model 

• Given 

 

 

 

– M-dimensional x and D-dimensional y 

– A is a DM matrix and b is D-dimensional 

• Goal 

– find the marginal distribution p(y) 

– find the conditional distribution p(x|y) 
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Joint Distribution 

quadratic function of the components of z, hence p(z) is Gaussian 

recall “completing the square”! 
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Covariance of the Joint Distribution 

considering the second-order terms 
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Mean of the Joint Distribution 

considering the first-order terms 
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Recall: Partitioned Gaussians 
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Marginal and Conditional 

now, apply the results for partitioned Gaussians 
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Bayes’ Theorem for Gaussian Variables 

• Given 

 

 

• we have 

 

 

• where 



Application 
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• Conjugate prior over parameters w 

 

• Data {x
i
,t
i
} Likelihood 

 

• Find posterior  

 

• Reminder: Bayes’ Theorem for Gaussians 

Bayesian Linear Regression 
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• Reminder: Bayes’ Theorem for Gaussians 

Bayesian Linear Regression (apply) 
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• Conjugate prior over parameters w 

 

• Data {x
i
,t
i
} Likelihood 

 

• Find posterior  

 

• Result 

Bayesian Linear Regression (result) 
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• Conjugate prior over parameters w 

 

• Data {x
i
,t
i
} Likelihood 

 

• Find posterior  

 

• Result 

Bayesian Linear Regression (specific) 
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• Conjugate prior over parameters w 

 

• Data {x
i
,t
i
} Likelihood 

 

• Posterior  

 

• Predictive Distribution 

Predictive Distribution 
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• Reminder: Bayes’ Theorem for Gaussians 

Predictive Distribution (apply) 
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• Conjugate prior over parameters w 

 

• Data {x
i
,t
i
} Likelihood 

 

• Posterior  

 

• Predictive Distribution 

Predictive Distribution (result) 
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Today 

• Classification 

– linear models for classification 

• Linear Discriminant Functions 

– two classes 

– multiple classes 



Classification 
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Classification 
• Classification 

– assign input vector x to one of K discrete classes (C1, C2, …,CK) 

– the input space is partitioned in decision regions … 

– … defined by the decision boundaries or decision surfaces  

• Notation 

– input: D-dimensional vector x 

– output (2 classes): binary variable t 

– output (K classes): K-dimensional vector t (1-of-K coding) 

• Linear classification 

– decision surfaces are linear functions of the input vector x 

– (D-1)-dimensional hyperplanes in D-dimensional input space 
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Linear Models for Classification 

• Generalized linear model 
 

 

– f( ) is a non-linear activation function, typical range: [0,1] 

– non-linear in the parameters due to the activation function 

– decision surfaces (linear in the input):  

• Features of the input 
 

 

– φ( ) is a vector of (non-linear) basis functions (features) 

– decision surfaces are now non-linear in the input 

– decision surfaces are still linear in the features/parameters 
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Inference and Decision 

• Inference 
– input x, target t 

– determine either p(x,t) or p(t|x) 

– example: probability of cancer, given an x-ray image 

• Decision 
– for given x, determine optimal decision based on predicted t 

– example: give cancer treatment, given an x-ray image 

– the decision step is easy, if we have solved the inference step 

• Example: Classification Rule 
– decision region Rk over x 

– corresponding to class Ck (decision)  
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Minimum Misclassification Rate 

Choose the class 
with the highest 

posterior probability 
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Minimum Expected Loss 

• Loss Function Lkj   

– associates decisions with costs 

– depends on decision and truth 

• Minimum Expected Loss 

– expected cost due to mistakes 

 

 

– choose regions that minimize the expected loss 

• Decision 

– choose class that minimizes loss 

Decision 

Tr
u

th
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Reject Option 
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Classification Decision Problem 

• Approach I: generative models 

– determine the class-conditional densities p(x|Ck) 

– infer the posterior class probabilities p(Ck|x) (through Bayes) 

– use decision theory to make decision 

• Approach II: discriminative models 

– determine the posterior class probabilities p(Ck|x) 

– use decision theory to make decision 

• Approach III: discriminant functions 

– determine a function that maps inputs to classes directly 

– use the discriminant function to make decision 
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Pros and Cons 

• Approach I: generative models 
– pros: can be used to generate synthetic data 

– cons: solves a much bigger problem, quite demanding 

– pros: can be used for outlier/novelty detection 

• Approach II: discriminative models 
– pros: makes no waste of resources, avoids complex models 

– cons: solves a slightly bigger problem 

• Approach III: discriminant functions 
– pros: a single (learning) problem 

– pros (cons?): may not use probabilities at all! 

– cons: black-box approach, provides no intuition 
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p(x|Ck) vs. p(Ck|x) vs. x* 
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Separating Inference and Decision 

• Minimizing risk 
– loss matrix may change over time 

– changes can be easily introduced in the minimum risk criterion 

• Reject option 
– posterior probabilities allow for a rejection criterion 

• Unbalanced class priors 
– posterior probabilities can be transformed to other populations 

• Combining models 
– split the problem, solve separately, model for each sub-problem 

– combine sub-models using probability theory to solve problem 

– exploit conditional independence 



Linear Discriminant Functions 
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Linear Discriminants 

• Linear discriminant function 
 

 

– w is the weight (parameter) vector 

– w0 is the bias parameter (its negative is the threshold) 

• Binary classification decision 

– choose class C1, if y(x)  0; choose class C2, otherwise 

• Decision surface 
 

– w defines orientation: 

– w0 defines location:  
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Linear Discriminant Geometry 
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Multiple Classes 

• One-versus-the-rest 

– K-1 binary discriminant functions 

– one for each of the first K-1 classes (within or outside class) 

– assign to last class, if not assigned to any of the previous K-1 

– problem: some regions may be ambiguously classified 

• One-versus-one 

– K(K-1)/2 binary discriminant functions 

– one for each pair of classes (competitive comparison) 

–  assign according to a majority vote amongst the discriminants 

– problem: some regions may be ambiguously classified 
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Three Classes Examples 
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K-Class Discriminant Function 

• K linear discriminant functions 

 

– 1-of-K binary coding scheme 

• Classification decision 

– assign input x to class Ck, if  

• Decision boundaries 

– boundary between classes Ck and Cj : 

– (D-1)-dimensional hyperplane 

– singly connected and convex decision regions 
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Decision Regions 
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Today 

• Linear Discriminant Estimation 

– least-squares 

– Fisher discriminant 

– perceptron 



Least-Squares Discriminant 
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Recall: K-Class Discriminant Function 

• K linear discriminant functions 

 

– 1-of-K binary coding scheme 

• Classification decision 

– assign input x to class Ck, if  

• Decision boundaries 

– boundary between classes Ck and Cj : 

– (D-1)-dimensional hyperplane 

– singly connected and convex decision regions 
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Notation 

• K-Class Linear Discriminant 

 

– 1-of-K binary coding scheme 

• Matrix notation 

 

– augmented input     with dummy x0 = 1 for the bias weight wk0 

– columns of (D+1)K matrix    : the K augmented weight vectors 

– assign input to class corresponding to largest-valued output 

• Given data 
– input     and target T matrices with inputs and targets in rows 
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Least-Squares Discriminant 

• Sum-of-squares error 
 

 

• Pseudoinverse solution 

 

• Linear discriminant function 
 

 

• Properties 

–                         implies                            , thus output sums up to 1 

– … but each individual element may be outside [0,1] 
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Least-Squares Discriminant Example 
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Least-Squares Discriminant Properties 

• Outliers 

– suffers from lack of robustness to outliers 

– the sum-of-squares function penalizes “too-correct” predictions 

• Assumptions 

– least-squares assumes  
Gaussian conditional  
distribution 

– binary target vectors  
are far from having a  
Gaussian distribution 

 



Fisher’s Linear Discriminant 
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Recall Linear Discriminant Geometry 
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Classification as Projection 

• Consideration 

– view classification in terms of dimensionality reduction 

• Observation 

– linear discriminant amounts to … 

– … projection down to one dimension using w 

– … and thresholding using w0 

• Idea 

– choose a projection that maximizes class separation! 

– adjust w to achieve the desired projection 
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Maximum Separation of Means 

• Class means 
 

 

• Projection 
 

• Separation 
 

• Constraint 
– constrain w to have unit length, using a Lagrange multiplier 

• Solution 

– project on the line connecting the means 
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Maximum Separation of Means Example 
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Fisher’s Criterion 

• Idea 

– find projection that maximizes class separation … 

– … and minimizes the within class variance (and class overlap) 

• Within-class variance 

 

 

• Fisher’s criterion 

– maximize the ratio of between-class and within-class variance 
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Fisher’s Linear Discriminant 

• Fisher’s criterion rewrite 

 

 

 

• Maximization 
– differentiate with respect to w and set to zero 

 

– drop the scaling factor (the magnitude of w is irrelevant) 

– multiply both sides by SW
-1 
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Fisher’s Linear Discriminant Example 
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Fisher’s Criterion and Least Squares 
• Target coding 

– for class C1: N/N1, for class C2: -N/N2 (N data points) 

– approximates the reciprocal of the prior class probability 

• Minimization of the sum-of-squares error 
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Multi-Class Fisher’s Discriminant 

– D dimensions, K classes, D’ linear features                  , (DD’) W 

• Projection 

– dimensionality reduction from D to D’ dimensions: 

• Co-variances in input space 
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Multi-Class Fisher’s Discriminant 

• Co-variances in projected space 

 

 

 

• Multi-class Fisher’s criterion 

 

• Solution 

– weights determined by the D’ most-important eigenvectors 

• Observation 
– D’ can effectively be at most (K-1), due to the rank of SB   



The Perceptron Algorithm 
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Perceptron 

• History 

– a first type of neural network (Rosenblatt, 1962) 

 

 

 

 

• Generalized linear model 
 

 

• Target coding 

– for class C1: +1,      for class C2: -1 
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Perceptron Criterion 

• Perceptron classification 

– xn in class C1, if wTÁ(xn) > 0; xn in class C2, if wTÁ(xn) < 0 

• Perceptron criterion 
– for correct classification, training examples (xn,tn) must satisfy 

 

– if example is correctly classified, no penalty 

– if example is misclassified, a penalty of –wTÁ(xn)tn  

• Perceptron error function 
 

 

–  M is the set of misclassified examples 
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Perceptron Learning 
• Update rule 

 
– where η is the learning rate; it can be set to 1 (scaling of w) 

– if example is correctly classified, no change 

– if misclassified, then we add or subtract Á(xn) to the weights  

• Convergence 

– error reduction from one example only, after update 

 

– if data are linearly separable, the perceptron will converge 
• may take many steps; dependence on initialization and order 

– if data are not linearly separable, it will not converge 
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Perceptron Learning Example (1) 
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Perceptron Learning Example (2) 
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Perceptron Learning Example (3) 
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Perceptron Learning Example (4) 
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Perceptron Properties 

• Limitations 

– binary classification problems 

– data must be linearly separable 

• Criticism 

– perceptrons cannot learn the XOR function! 

– “Perceptrons” by Marvin Minsky and Seymour Papert (1969) 

– turned down all funding in neural computing 

• Related models 

– adaline: adaptive linear element (Widrow and Hoff, 1960) 

– same functional form, different training method 
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Today 

• Linear Generative Classification 

– generative approach 

– generative models 

– ML parameter estimation 

– discrete inputs 

– exponential family 
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Recall: Classification Decision Problem 

• Approach I: generative models 

– determine the class-conditional densities p(x|Ck) 

– infer the posterior class probabilities p(Ck|x) (through Bayes) 

– use decision theory to make decision 

• Approach II: discriminative models 

– determine the posterior class probabilities p(Ck|x) 

– use decision theory to make decision 

• Approach III: discriminant functions 

– determine a function that maps inputs to classes directly 

– use the discriminant function to make decision 



Linear Generative Classification 
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Generative Models for Classification 

• Generative models approach 
– determine the class-conditional densities p(x|Ck) 

– infer the posterior class probabilities p(Ck|x) (through Bayes) 

– use decision theory to make decision 

• Simplest case: two classes 

– posterior probability for the first class 
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Logistic Sigmoid Function 

• Definition 

– squashing function 

– maps the real axis  
into a finite interval 

 

• Symmetry 

 

• Inverse 

– logit function (log odds) • Derivative 
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Generative Models for Classification 

• Generalization: multiple classes 

– posterior probability for each class 

 

 

 

 

– known as the normalized exponential 

– multiclass generalization of the sigmoid function 

– also known as the softmax function 
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Continuous Inputs, Two Classes 
• Gaussian class-conditional densities 

– same covariance matrix Σ  

 

 

• Posterior probability 

 

 
 

 

– quadratic terms cancel out (due to common covariance) 

– a sigmoid of a linear function of the input x  

– linear boundary in input space, priors only shift the boundary 
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Continuous Inputs, Two Classes 
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Continuous Inputs, Multiple Classes 

• Gaussian class-conditional densities 

– same covariance matrix Σ 

 

 

• Posterior probability 

 

 
 

 

– quadratic terms cancel out (due to common covariance) 

– for different covariance matrices Σk: a quadratic function of x  
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Continuous Inputs, Multiple Classes 



M. G. Lagoudakis         TUC ECE, Machine Learning, Spring 2023       Page 12 

ML Parameter Estimation 

• Given 
– data set {xn,tn}, where tn= 1 for C1 and tn= 0 for C2 

– prior probabilities: p(C1) = ¼ and p(C2) = 1 – ¼ 

– Gaussian class-conditional densities, same covariance matrix 

• Joint densities 

 

 

• Likelihood 
 

 

– maximize log likelihood with respect to  
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ML Estimation of ¼ 

• Terms containing ¼ 

 

 

• Differentiating and setting to zero 
 

 

 

– Nj: total number of data points in class Cj 

– ML estimate for prior: fraction of data in class 

– generalizes easily to multiple classes 
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ML Estimation of ¹1 and ¹2 

• Terms containing ¹1 

 

 

• Differentiating and setting to zero 

 

 
 

 

 

– ML estimate of ¹j: mean of data points assigned to class Cj 

– generalizes easily to multiple classes 
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ML Estimation of Σ 
• Terms containing Σ 

 

 

 

 

 
 

 

• Solution 
– Σ = S 

– ML estimate of Σ: weighted average of class covariances 

– generalizes easily to multiple classes 
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Today 

• Linear Discriminative Models 

– two-class 

– iteratively reweighted least squares 

– multi-class 

 



Linear Discriminative Models 
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Recall: Classification Decision Problem 

• Approach I: generative models 

– determine the class-conditional densities p(x|Ck) 

– infer the posterior class probabilities p(Ck|x) (through Bayes) 

– use decision theory to make decision 

• Approach II: discriminative models 

– determine the posterior class probabilities p(Ck|x) 

– use decision theory to make decision 

• Approach III: discriminant functions 

– determine a function that maps inputs to classes directly 

– use the discriminant function to make decision 
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Input vs. Feature Space 

– classification models: in the original or in the feature space 

– simplest feature space: a set of fixed basis functions 



Binary Discriminative Models 
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Generative vs. Discriminative Models 

• Recall: two-class generative classification 
– models for the class-conditional densities p(x|Ck) (and priors) 

– Gaussian class-conditional densities, same covariance matrix 

– assume M-dimensional feature space Á(x) (or input space x)  

– 1+M+M+M(M+1)/2 = (M2+5M+2)/2 parameters:  

– posterior: a sigmoid of a linear function of Á(x) (or x)   

• Idea: two-class discriminative classification 
– models for the posterior class probabilities p(Ck|x) 

 
– a total of M parameters (w) – linear vs. quadratic growth! 
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ML Parameter Estimation 

• Given 
– a set of M fixed basis functions Á(x) (features) 

– posterior model: a sigmoid of a linear function of Á(x) 

– data set {Án,tn}, where Án= Á(xn), tn= 1 for C1 and tn= 0 for C2 

• Likelihood 
 

 

• Cross-entropy error function 

 
 

– optimize with respect to the parameters w 
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ML Parameter Estimation 

• Cross-entropy error function 
 

 

• Differentiation 
 

 

• Sequential gradient descent 

 

• Observations 

– for linearly-separable data, there is an infinity of solutions 

– regularization or MAP estimation to avoid singularity 
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Newton-Raphson ML Estimation 

• ML parameter estimation 

– unlike least-squares linear regression with Gaussian noise, 
closed-form solution is not possible due to non-linearity of σ   

– idea: use of Newton-Raphson iterative optimization scheme 

– based on a local quadratic approximation of the log likelihood 

• Newton-Raphson 
– minimize error function E(w) 

– iterative update 

 

– H is the Hessian matrix (second derivatives of E(w)) 
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Newton-Raphson on Sum-of-Squares 

• Sum-of-squares error function 
 

 

• Gradient and Hessian 
 

 

 

 

• Newton-Raphson update 

 

– least-squares solution in one step due to quadratic error 
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Newton-Raphson on Cross-Entropy 

• Cross-entropy error function 
 

 

• Gradient and Hessian 
 

 

 

 

• Newton-Raphson update 
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Iteratively Reweighted Least Squares 

• Iteratively Reweighted Least Squares (IRLS) [Rubin, 1983] 

 

– normal equations for a weighted least-squares problem 

– weights R and “targets” z depend on the parameter vector w 

– the weights can be seen as the variance in the targets 

 

• IRLS interpretation 
– solving the linearized problem in the space of a = wTÁ 

– the effective target zn is a localized linear approximation of σ 



Multi-Class Discriminative Models 
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Multi-Class ML Parameter Estimation 

• Given 
– a set of M fixed basis functions Á(x) (features) 

– posterior model per class: a softmax of a linear function of Á(x) 

 

 

– a total of MK parameters for K classes 

– data set {Án,tn}, where Án= Á(xn), tn is a 1-of-K coding label 

• Likelihood 
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Multi-Class ML Parameter Estimation 

• Cross-entropy error function 
 

 

• Differentiation 
 

 

 

 

• Sequential gradient descent 

 



M. G. Lagoudakis         TUC ECE, Machine Learning, Spring 2023       Page 17 

Multi-Class Newton-Raphson 

• Cross-entropy error function 
 

 

• Gradient and Hessian 

 

 

 

 

• IRLS 
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Today 

• The Laplace approximation 

– one-dimensional 

– multi-dimensional 

– application to model comparison 

• Bayesian logistic regression 

– approximate posterior 

– approximate predictive distribution 

 

 



The Laplace Approximation 
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1-D Laplace Approximation 

• Laplace density approximation 

– approximate an arbitrary probability density with a Gaussian 

– Gaussian centered on a mode of the approximated density 

• Density 
– probability density over some variable z 

 

 

– normalization constant Z can be unknown 

• Mode 
– the derivative of the density is zero at a mode z0 : 
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1-D Laplace Approximation 

• Taylor expansion 
– Taylor expansion of the density logarithm about the mode z0  

 

 

– the first-order term vanishes due to z0 being a mode  

• Gaussian approximation 

– the logarithm of a Gaussian is a quadratic function 

– so is the Taylor expansion of the density logarithm! 

– take exponential to form a Gaussian and normalize (need A>0) 
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1-D Laplace Approximation Example 

normalized distributions 

negative logarithm curves 
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M-D Laplace Approximation 

• Density 
– density over M-dimensional variable z:  

• Taylor expansion 
 

 

• Gaussian approximation 

 

 

 

 

– A must be positive definite for z0 to be a mode 
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Laplace Approximation in Practice 
• Procedure 

– find a mode: numerical optimization (multiple solutions) 

– evaluate the Hessian at the mode: must be positive definite 

• Application 
– approximating posteriors (tend to be Gaussian for lots of data) 

• Weaknesses 
– the Gaussian distribution extends over the entire real axis 

– the Gaussian distribution is inherently unimodal 

– the approximation is based on local aspects around the mode 

– the approximation may fail to capture global properties 

• Trick 
– transformation: Laplace approximation of lnx for 0·x<1  
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Approximating the Normalizer 

• Idea 

– integrate the Laplace approximation instead of the density 

• Approximate normalizer 

 

 

 

 

 

• Application 

– compute approximation to model evidence 
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Application to Model Comparison 

• Bayesian model comparison 
– given: data set D, set of models {Mi} with parameters {µi} 

– define likelihood p(D|µi,Mi), prior p(µi|Mi) over parameters 

– find the model evidence p(D|Mi) for each model Mi  

• Approach 

 

 

 
 

– µMAP is the mode of the posterior 

– A is the Hessian 
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Bayesian Information Criterion (BIC) 

• Model evidence 

 

 

• Assumptions 

– a broad Gaussian prior distribution over the parameters 

– the Hessian is full rank 

• Bayesian Information or Schwarz Criterion 
 

 

– 1st term: log likelihood evaluated at the optimized parameters 

– 2nd term: penalty for model complexity 



Bayesian Logistic Regression 
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Bayesian Logistic Regression 

• Bayesian treatment 

– introduce a (conjugate) prior over the parameters 

– define the likelihood of the data given the parameters 

– compute the posterior over the parameters 

– infer the predictive distribution by integrating over parameters 

• Exact Bayesian logistic regression 

– finding the posterior or the predictive distribution is intractable! 

– posterior: product of prior and likelihood (product of sigmoids) 

– predictive: integration of a product of sigmoids 

– idea: apply Laplace approximation! 
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Approximate Bayesian Logistic Regression 

• Gaussian prior 
 

• Posterior 
 

• Log posterior 

 

 

• Laplace approximation 
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Predictive Distribution 

• Predictive distribution for input Á(x) 

– class C1:  

– class C2: 

• Algebraic manipulation 

 

 

 

 

 

– δ() is the Dirac delta function 
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Predictive Distribution 

• Evaluation 

 

– the delta function imposes a linear constraint on w 

– leads to a marginal distribution of the joint distribution q(w) 

– obtained by integrating out all directions orthogonal to Á  

– the marginal must be Gaussian, since q(w) is Gaussian 
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Approximate Predictive Distribution 

• Variational approximation 

 

– convolution of a logistic sigmoid with a Gaussian 

– cannot be evaluated analytically 

– approximate the logistic sigmoid with a probit function 
 

 

– rescale the probit to have identical slope at 0 

– the convolution of a probit and a Gaussian is another probit 
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Sigmoid (red) and Probit (blue) 
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Approximate Predictive Distribution 

 

• Approximate convolution 
 

 

• Approximate predictive distribution 

 

 
 

– decision boundary p(C1|Á,t)=0.5 is given by μa=0 (same as MAP) 

– for minimizing misclassification with equal priors, no change 

– for other decision criteria, marginalization makes a difference 
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Predictive Distribution Example 
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Sampled (w) Decision Boundaries 
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Today 

• Kernel Methods 

• Dual Representation 

• Kernel Construction 

• Kernel Regression 

 

 



Kernel Methods 
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Parametric vs. Non-Parametric 
• Parametric 

– model is governed by a vector of adjustable parameters 

– learning: obtain a point estimate or a posterior distribution 

– training data are discarded after learning 

– predictions are based on the learned parameters 

• Non-parametric 
– there are no adjustable parameters in the model 

– learning: select which of the training data to use and how 

– training data (or a subset of) are kept after learning 

– predictions are based on the kept training data 

– memory-based methods: fast learning, slow prediction 

– examples: Parzen probability density, nearest neighbors, … 
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Kernel Functions 
• Kernel function 

– inner product of feature vectors (fixed nonlinear features Á) 

 

– symmetric function over its arguments:  

– the definition can be generalized even to discrete objects 

• Kernel substitution (kernel trick) 
– formulate an algorithm so that x enters only in scalar products 

– replace the scalar products with a kernel 

• Types of kernels 

– stationary (invariant to translations): 

– homogeneous (depend on distance):  
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Kernel Methods 

• Kernel methods 

– methods in which predictions are based on combinations of 
kernel functions evaluated between the input and data points 

– need a dual representation of the problem for kernelization 

• Kernelized algorithms 

– nearest-neighbor classifiers 

– Fisher discriminant 

– support vector machines 

– relevance vector machines 

– principal component analysis 

– … 



Dual Representation 
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Dual Representation (1) 
• Duality 

– many linear models can be reformulated using a dual 
representation, where the kernel function arises naturally 

• Regularized Sum-of-Squares 
 

 

• Solution 

– setting the gradient to zero reveals the form of the solution 

linear combination 
of feature vectors! 
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Dual Representation (2) 
• Reformulation 

– reformulate in terms of the new N-dim parameter vector a 

 

 
 

– substitute w = ©Ta into J(w) 
 

 

• Kernelization 

– NN Gram matrix K = ©©T    
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Dual Representation (3) 
• Solution 

– setting the gradient of J(a) to zero 

 

– or, alternatively, substituting w = ©Ta into the solution for w 

 

– solving for a leads to an NN inversion (vs. MM for w, M¿N) 

• Prediction 
 

– need N-dim vector  

– the prediction is a function of the data, no parameters! 

– no explicit computation of Á(x), computation of kernels only 



Kernel Construction 
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Kernel Definition Approaches 

• Indirect 
– choose feature space Á(x) first and then construct the kernel 

 

 

• Direct 

– choose the kernel directly, but ensure it is a valid one 

– must correspond to a scalar product in some feature space 

– the Gram matrix K must be positive semidefinite for all {xn} 

– the dimension M of the feature space can be arbitrary 
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Indirect Approach Example 
feature spaces and kernels (x’ at red mark) for polynomial, Gaussian, logistic sigmoid basis 
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Direct Approach Example 

• Kernel function 

 

• Two-dimensional input space 

 

 

 

 

– it is a valid kernel! 

• Feature space 
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Structural Kernel Definition 
– given valid kernels k1(x,x’) and k2(x,x’), the following are also valid:  

c > 0 is a constant 

f(.) is any function 

q(.) is a polynomial with coeff  0 

Á(x) is a feature space mapping 

A is symmetric positive semidefinite 

x = (xa, xb)  

ka(xa,xa’) and kb(xb,xb’) are valid 
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Kernel Examples 

• Polynomial 
– k(x,x’) = (xTx’)2 contains only terms of degree 2 

– k(x,x’) = (xTx’+c)2, c > 0, contains terms of degree up to 2 

– k(x,x’) = (xTx’)M contains only terms of degree M  

– k(x,x’) = (xTx’+c)M, c > 0, contains terms of degree up to M  

• Gaussian 
– k(x,x’) = exp(-kx-x’k2/2¾2), infinite dimensional feature space 

• Sigmoidal 
– k(x,x’) = tanh(axTx’+b), Gram may not be positive semidefinite 

• Non-vectorial 
– k(A1,A2) = 2|A1A2| over subsets of a set 
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The Gaussian Kernel 

– defining 
 

 

– expanding the square 

 

 

– substituting  
 

 

– using valid linear kernel and kernel properties  



Kernel Regression 
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Application to Regression 

• Given 
– training set {xn,tn} of inputs and targets 

• Joint distribution 
– Parzen density estimator for the joint distribution p(x,t) 

 

 

– component density functions f(x,t) centered on data 

• Goal 
– an expression for the regression function y(x) = p(t|x) 

– conditional average of target t conditioned on input x  
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Kernel Regression 

 

 

– zero mean components and change of variables 

 

– Nadaraya-Watson model (kernel regression) 
 

 

 

– full conditional distribution 
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Kernel Regression Example 

•Densities f(x,t) 

–zero-mean 

–isotropic  

–Gaussian 

•Legend 
–truth (green) 

–data (blue) 

–regression (red) 

–variance (shade) 
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Today 

• Gaussian Processes 

• Gaussian Process Regression 

• Learning Hyperparameters  

 

 



Gaussian Processes 
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Motivation 
• Bayesian linear regression 

– parametric linear model in a (non-linear) feature space 

– prior distribution over the parameters … 

– … induces prior distribution over regression functions 

– given training set, posterior distribution over the parameters … 

– … yields a posterior distribution over regression functions 

– … and implies a predictive distribution (with addition of noise) 

• Gaussian processes 
– directly define a prior distribution over regression functions 

– … then infer the posterior distribution over regression functions 

– problem: uncountably infinite space of regression functions! 

– idea: can focus only on their values at the data points (finite) 
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Linear Regression Revisited 

• Model 

– linear combination of M fixed features  

• Prior 

– isotropic Gaussian 

• Distributions 
– each value of w defines some regression function y(x) 

– prior over w induces distribution over regression functions y  

– for data points x1, x2, … xN, we care about y(x1), y(x2), … y(xN) 

– what is the joint distribution of the regression function values?  
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Linear Regression Revisited 

• Output 

– vector y with elements 

– can be written as y = ©w, © is the design matrix 

• Distribution 
– y is a linear combination of Gaussian distributed variables (w) 

– hence, the distribution over y must be Gaussian 

– only need to find mean and covariance 

 

 
– K is the Gram matrix 

This is an example of 
a Gaussian process! 



M. G. Lagoudakis         TUC ECE, Machine Learning, Spring 2023       Page 7 

Gaussian Stochastic Processes 

• Definition 
– a probability distribution over functions y(x), so that the values 

of y(x) at points x1, x2, … xN jointly have a Gaussian distribution 

– for two dimensional input, it is known as Gaussian random field 

– specified by the joint probability distribution over y1, y2, …, yN  

– being Gaussian, it can be specified by second-order statistics 

– mean is commonly taken to be zero, thus need only covariance 

– covariance of y(x) at any two points xn, xm given by a kernel 

 

– the kernel function can be defined indirectly (feature vector) … 

– … or the kernel function can be defined directly (no features) 
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Functions from Gaussian Processes 
Gaussian kernel exponential kernel 
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Functions from Gaussian Processes 
Gaussian kernel exponential kernel 



Gaussian Process Regression 
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Gaussian Process for Regression 

• Output noise 
– for yn = y(xn) and random noise ²n, the target is tn = yn + ²n  

– for Gaussian noise with precision ¯:  

• Joint distribution 

 

 

– for similar inputs xn, xm the outputs yn, ym will be correlated 

• Marginal distribution 
 

 

– independent Gaussian randomness, so covariances add 
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Example Kernel for Regression 

• Kernel 

– exponential of quadratic form with linear and constant terms 

 

 

 

• Hyperparameters 
– µ0 : weight on quadratic term 

– µ1 : scaling of exponential 

– µ2 : weight on constant term 

– µ3 : weight on linear term 
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Regression Function Samples 
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Sampling of Data Points Example 

•Kernel 
–exponential of quadratic … 

–… plus linear 

–… plus constant 

•Legend 
–regression function (blue) 

–10 data points 

–sample outputs (red) 

–additive noise (yellow) 

–sample targets (green) 
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Data Conditioning Example 
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Making Predictions 

• Prediction 

– so far, only model of the joint distribution over data points 

– regression is about making predictions at new data points 

– given a training set: targets                                     for x1, x2, … xN 

– … we need to predict target tN+1 for new input xN+1   

• Gaussian process prediction 
– we need to evaluate the predictive distribution p(tN+1|tN)  

– conditioned also on x1, x2, … xN, xN+1, but dropped for clarity 

– obtain conditional distribution from the joint one for N+1 
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Gaussian Process Prediction 

• Joint distribution  

 

 

 

 

• Conditional distribution 
– p(tN+1|tN) is also Gaussian 

– mean  

– variance 

– dependence on xN+1 through k  
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Conditional Distribution Example 

•Kernel 
–exponential of quadratic … 

–… plus linear 

–… plus constant 

•Legend 
–training data point (blue) 

–test data point (green) 

–joint distribution (red) 

•2D zero-mean Gaussian 

–conditioning (blue line) 

–conditional (green curve) 

•1D Gaussian 

–conditional mean (green line) 
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Gaussian Process Regression Example 

•Kernel 
–exponential  
   of quadratic … 

–… plus linear 

–… plus constant 

•Legend 
–truth (green) 

–data (blue) 

–regression (red) 

–variance (shade) 
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GP Regression Example 1 

•Kernel 
–exponential  
   of quadratic 

–params: σf , l 

•Legend 
–data (x) 

–regression  
   (dark blue) 

–variance  
   (blue shade) 

–observation  
   noise σy  
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GP Regression Example 2 

•Kernel 
–exponential  
   of quadratic 

–params: σf , l 

•Legend 
–data (x) 

–regression  
   (dark blue) 

–variance  
   (blue shade) 

–observation  
   noise σy  
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Constructing Kernels for Regression 
• Requirements 

– covariance matrix C must be positive definite 

– if ¸i is an eigenvalue of K, then ¸i + ¯-1 is an eigenvalue of C 

– since ¯ > 0, it suffices ¸i  0 or that K is positive semidefinite 

• Kernel construction 

– same, typical, requirements for kernel construction 

• Expansion 

– mean of predictive dist 

– an is the n-th component of CN
-1 tN  

– for homogeneous kernel function, it is a radial basis expansion 

– in this case, kernels can be constructed indirectly (features)  
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Computational Complexity 

• Basis functions linear regression 

– inversion of MM matrix SN, O(M3) time, once per training set 

– MM matrix-vector multiplication, O(M2) time per prediction 

• Gaussian process regression 

– inversion of NN matrix CN, O(N3) time, once per training set 

– NN matrix-vector multiplication, O(N2) time per prediction 

• Comparison 

– if M much smaller than N, then basis functions are preferred 

– GPs consider covariance functions expressible by infinite BFs 

– for large data sets, there are approximation schemes for GPs 



Learning Hyperparameters 
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Learning 
• Learning hyperparameters 

– parameters µ of the kernel; determine the covariance function 

– instead of fixing their values, infer them from the data 

• Log likelihood learning 
– maximization of the log likelihood p(t|µ) for a point estimate 

– log likelihood may be non-convex and may have multiple maxima 

– log likelihood: 

– gradient:  

• Bayesian setting 
– introduce a prior over µ and maximize the log posterior  

– evaluate marginals over µ weighted by prior, likelihood (approx) 
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Automatic Relevance Determination 
• ARD 

– introduce a separate parameter ηi for each input dimension i  

– optimize using maximum likelihood 

– infer the relative importance of different inputs from data 

– a small value of ηi implies insensitivity to input dimension i  

• ARD examples 

– exponential-quadratic kernel in two dimensions 
 

 

– extended exponential-quadratic kernel in D dimensions 
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ARD Impact Examples 
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ARD Learning 

• x1 (red) 

– samples from the   
    target function 

• x2 (green) 
– copy of x1 with    
    extra noise added 

• x3 (blue) 

– samples from an  
    independent  
    Gaussian 
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Today 

• Gaussian Process Classification 

– using Laplace approximation 

– using Iteratively Reweighted Least-Squares 



Gaussian Process Classification 
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Motivation 

• From regression to classification 

– probabilistic classification: predict posterior class probabilities 

– Gaussian processes make predictions on the entire real axis 

– idea: use a non-linear activation function to limit output to (0,1) 

• Binary classification 

– two-class classification problem with targets in {0,1} 

– define a Gaussian process whose (real) output is a(x)  

– transform (real) output to probability using a sigmoid, y = ¾(a) 

– result: a non-Gaussian process over functions y(x), y(0,1) 

– take Bernoulli probability distribution over the target variable t  
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Output Transformation Example 

output of Gaussian process 

output of activation function 
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Formulation 

• Given 
– inputs x1, x2, … xN with observed targets 

– a single test input xN+1 whose target is denoted as tN+1  

• Goal 
– determine predictive distribution p(tN+1|tN)  

– conditioned also on x1, x2, … xN, xN+1, but dropped for clarity 

• Approach 

– a Gaussian process prior over  

– a non-Gaussian process prior over  

– marginalization by conditioning on the training data tN  
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Gaussian Process Classification 
• Gaussian process 

 

– no need for output noise parameter ¯, since targets are “clean” 

– still, a small value º is used to ensure that C is positive definite 

– can use any positive semidefinite kernel (parameterized by µ) 

– prediction 

 

• Predictive distribution 
– suffices to predict p(tN+1=1|tN); complementary p(tN+1=0|tN) 
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Approximations … 

– the integral of the predictive distribution is intractable! 

• Approximating the integral 

– 1) Monte Carlo sampling methods 

– 2) approximation for convolution of sigmoid with Gaussian 

– the latter requires a Gaussian approximation to p(aN+1|tN)  

• Approximating the posterior 

– 1) variational inference using variational bound on logistic 

– 2) expectation propagation due to unimodality 

– 3) Laplace approximation (our lovely choice!)  
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Laplace Approximation 

• Using Bayes theorem 

 

 

 

 

 

 

– p(aN+1|aN) is Gaussian 

– Laplace approximation for the posterior p(aN|tN)  

– then, use known result for convolution of two Gaussians 
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Recall: Logistic Sigmoid Function 

• Definition 

– squashing function 

– maps the real axis  
into a finite interval 

 

• Symmetry 

 

• Inverse 

– logit function (log odds) • Derivative 
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Recall: M-D Laplace Approximation 

• Density 
– density over M-dimensional variable z:  

• Taylor expansion 
 

 

• Gaussian approximation 

 

 

 

 

– A must be positive definite for z0 to be a mode 
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Laplace Approximation 
– the prior p(aN) is zero-mean Gaussian with covariance CN  

–  likelihood of targets 
 

 

– Taylor expansion of the logarithm of 

 

 

– first and second derivatives  

 

 

– Hessian                            is positive definite (sum of positive definite) 

– the posterior p(aN|tN) is log convex and thus has a single mode  
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Iteratively Reweighted Least-Squares 
– the mode (global maximum) cannot be found by setting the 

gradient to zero, due to nonlinear dependence of ¾N on aN  

– thus, iterative scheme based on Newton-Raphson (and IRLS) 

 
– the iteration converges to a*

N, where the gradient vanishes 

 

– now, we can evaluate the Hessian 

 
– to obtain the final Gaussian approximation to p(aN|tN)  

 



M. G. Lagoudakis         TUC ECE, Machine Learning, Spring 2023       Page 14 

Back to our Approximation 
– final Gaussian approximation to p(aN+1|tN) 

 

 

 

 

 

 

– use known result for convolution of two Gaussians (next slide) 
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Back to our Approximation (Proof) 
• Reminder: Bayes’ Theorem for Gaussians 
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Derive the Predictive Distribution 
• Reminder: Convolution of Sigmoid with Gaussian 

 

• Predictive Distribution 
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GP Binary Classification Example 

•Legend 
–class 0 (red) 

–class 1 (blue)  

–optimal (green) 

–boundary (black) 
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GP Binary Classification Probabilities 

•Legend 
–class 0 (red) 

–class 1 (blue)  

–boundary (black) 
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Today 

• Sparse Kernel Machines 

• Maximum Margin Criterion 

• Lagrange Multipliers 
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Sparse Kernel Methods 

• Kernel Methods 

– non-parametric methods, rely on kernel, no parameters 

– limitation: the kernel function must be evaluated over all pairs 

– predictions are computationally expensive 

– idea: can we evaluate the kernel function only over a subset? 

• Sparse Kernel Machines 

– select a subset of training points that determine the outcome 

– use only the selected subset for prediction 

– Support Vector Machines (SVMs) [discriminant functions] 

– Relevance Vector Machines (RVMs) [discriminant models] 



Maximum Margin Criterion 
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Recall: Linear Discriminants 

• Linear discriminant function 
 

 

– Á is a set of features 

– w is the weight (parameter) vector 

– b is the bias parameter (its negative is the threshold) 

• Binary classification 
– data: inputs x1, x2, … xN with targets t1, t2, … tN  

– target coding: for class C1: +1,      for class C2: -1 

• Decision surface 
– w defines orientation and b defines location 

– decision: sign of y(x); if separable, for all points: tny(xn) > 0 
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Linear Discriminant Geometry 

  - b       
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Margin Geometry 

margin: perpendicular distance between decision boundary and closest point 
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Maximum Margin Geometry 

maximum margin: determined by a subset of points (support vectors) 
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Max Margin and Support Vectors 

• (Unsigned) distance to margin 
 

 

 

• Maximum margin solution 

 

 

 

– hard to solve problem 

– points defining the min in the solution are the support vectors 
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Canonical Representation 

• Scale invariance 

– does not affect distances to margin and the decision boundary 

– therefore, there exist multiple solutions for w and b  

• Canonical representation 

– for points closest to the margin (active) 
 

– for all points, including those away (inactive) 
 

• Constrained optimization 

– maximize              (or minimize            )  

– quadratic programming problem 

subject to 
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Maximum Margin Example 

large margin (left, 3 active points) and small margin (right, 2 active points) 



Lagrange Multipliers 
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Constrained Optimization 
• Problem 

– find the stationary points of a function of several variables … 

– … subject to one or more constraints on the variables 

• Example 
– find the maximum of f(x1,x2) subject to constraint g(x1,x2) = 0 

• Approach 
– solve g(x1,x2) = 0 to express x2 as a function of x1: x2 = h(x1) 

– substitute x2 into f(x1,x2) to obtain f(x1, h(x1)) 

– differentiate, set to zero, and solve for x1 to obtain x1
*  

– obtain x2
* = h(x1

*) 

• Properties 
– analytical solution may be difficult; also, breaks the symmetry 
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Optimization Geometry - Equality 
• D-dimensional optimization 

– maximize f(x) subject to g(x) = 0 

– g(x)=0: (D-1)-dimensional surface on x  

• Property 

– rg(x) is orthogonal to the surface 
• Proof 

– Taylor expansion around x on the surface 

 

– both x and x+² lie on the surface: g(x) = g(x+²) = 0 

– therefore,                         and when                : 

– since ² is parallel to the surface, rg is normal to the surface 
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Optimization Geometry - Equality 

• Property 

– rf(x) is also orthogonal to the surface 
– … at the point xA of the surface 

– … where f(x) is maximized along the surface 

• Proof 
– if it was not orthogonal to the surface at xA 

– … then we could increase the value of f(x) 

– … by moving a short distance along the surface 

• Property 

– vectors rf(x) and rg(x) are either parallel or anti-parallel at xA  
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Lagrangian Optimization - Equality 

• Lagrangian Function 

 

– ¸  0 is known as the Lagrange (or undetermined) multiplier   

– stationary points of L(x,¸) also solve the constrained problem 

 

 

• Lagrangian Optimization 
– to maximize f(x) subject to g(x) = 0, equivalently … 

– … find the stationary point of the Lagrangian function L(x,¸)  

– yields D+1 equations that determine both xA and ¸  
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Lagrangian Optimization Example 

• 2-dimensional optimization 

– maximize 

– subject to   

• Lagrangian 

 

• Stationarity conditions 

 

 

• Solution 
– (x1

*, x2
*) = (0.5, 0.5) and ¸ = 1 
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Optimization Geometry - Inequality 
• D-dimensional optimization 

– maximize f(x) subject to g(x) ¸ 0 
– the constraint defines a region over x  

• Solution xB inside region 
– the constraint is inactive 

 

• Solution xA on boundary 
– the constraint is active 

– vectors rf(x) and rg(x) must be anti-parallel at xA  
 

• Property 
– xA and xB are stationary points of                                  , if    
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Lagrangian Optimization - Inequality 
• Lagrangian maximization 

– to maximize f(x) subject to g(x) ¸ 0, equivalently … 
– … find the stationary point of the Lagrangian function L(x,¸)  

 

– subject to  

 

 

– known as Karush-Kuhn-Tucker (KTT) conditions 

• Lagrangian minimization 

– to minimize f(x) subject to g(x) ¸ 0, simply … 
– … change the Lagrangian function to 
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Lagrange Multipliers - Summary 
• Maximization 

– to maximize f(x) subject to gj(x) = 0 and hk(x) ¸ 0, … 
– … use Lagrange multipliers ¸j and ¹k and Lagrangian function 

 

 

– subject to  

• Minimization 

– to minimize f(x) subject to gj(x) = 0 and hk(x) ¸ 0, … 
 

 
– subject to 
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Today 

• SVMs for Non-Overlapping Classes 

• SVMs for Overlapping Classes 

• SVMs for Multiple Classes 

• SVMs for Regression 

 



SVMs for Non-Overlapping Classes 
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Maximum Margin Solution 

• Maximum margin 

 

 

• Constrained optimization 

– quadratic programming problem 

– given a data set { (xn, tn) } …  

– … and a linear discriminant function  

 

 

– can be solved using the method of Lagrange multipliers 
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Lagrange Multipliers for Max Margin 

• Problem 

 

• Recall 

– to minimize f(x) subject to gj(x) = 0 and hk(x) ¸ 0, … 

 
 

– subject to 

• Lagrangian 
 

 

– s.t.  
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Dual Formulation 
• Primal 

 

– s.t.  

• Derivatives 

– stationarity 
 

 

• Dual 
 

 

– subject to 
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Dual Formulation Properties 
• Dual 

 

 

– subject to 

• Properties 

– it is a kernelized approach 

– bounded above for positive definite kernel function 

– well-defined, quadratic, convex optimization problem 

– optimal a can be found by a variety of methods 

– complexity: from O(M3) in primal to O(N3) in dual, but … 

– … now can utilize high-dimensional feature spaces! 
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Prediction 

• Output 
 

 

• Sparsity 

– from KKT conditions, … 

– … either tny(xn) = 1 (support vectors) 

– … or must be an = 0 (most data points) 

– need to keep and use only the support vectors for prediction 

• Estimating b from support vectors S 

 

multiply both sides by tn 
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SVM with Gaussian Kernel  
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SVM with Cubic Polynomial Kernel  



SVMs for Overlapping Classes 
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Separable vs. Non-Separable Data 

• Separable data 

– objective  

– error function 
 

– infinite error to misclassified data points  

– zero error to correctly classified data points 

• Non-separable data 

– must allow for some misclassification of data points 

– define penalty for being on the wrong side of the boundary 

– penalty should increase with distance from the boundary 

– for convenience, penalty is a linear function of the distance 
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Slack Variables 

• Constraints 

 

• Relaxation 

 

• Slack variables 

– one per data point 

– constraint »n  0  

– if »n = 0, xn is correctly classified (original problem) 

– if 0 < »n  1, xn is within the margin, but correctly classified 

– if 1 < »n, xn is on the wrong side of the boundary, misclassified 
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SVM Optimization Problem 

• Original 

 

• New 

 

 

– the parameter C>0 controls the trade-off between penalties 

–  n »n is an upper bound to the number of misclassifications 

– C is analogous to (the inverse of) a regularization coefficient 

– C trades off misclassification and model complexity 

– when C, the original problem (separable data) is recovered 
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SVM Lagrangian 

• Lagrangian 

 

 

• Karush-Kuhn-Tucker (KKT) conditions 
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SVM Dual Lagrangian 

• Maximize 

 

 

• subject to 

 

 

– quadratic optimization problem 

– almost identical to the separable case, except C ! 

– the N constraints on the an’s are known as box constraints 
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SVM Prediction 

• Predictive model 
 

 

– an = 0 : no contribution to prediction, data can be discarded 

– an > 0 : support vectors S, the sum is taken over them only 

– an < C : on the margin (¹n > 0 and »n = 0), correctly classified 

– an = C : within the margin, correct (»n1) or misclassified (»n>1) 

• Threshold b 
– M: support vectors with 0<an<C have »n = 0 and tny(xn)=1, thus 
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v-SVM Dual Lagrangian 

• Maximize 

 

 

• subject to 

 

 

 

 

– quadratic optimization problem 

– v: bound, upper on margin errors and lower on support vectors 
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v-SVM Classification Example 

Gaussian 
kernels 

with γ=0.45 
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Quadratic Programming Problem 

• Optimization problem 

– objective function is quadratic 

– linear constraints define a convex region 

– any local optimum is also a global optimum 

• Approaches 

– chunking (Vapnik, 1982) 

– protected conjugate gradients (Burges, 1998) 

– decomposition methods (Osuna et al., 1996) 

– sequential minimal optimization (SMO) (Platt, 1999) 
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Loss Functions (scaled) 

black : misclassification error (ideal) 
green : squared error (least-squares) 
red : cross-entropy error (logistic regression) 
blue : hinge error (support vector machine) 



SVMs for Multiple Classes 
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One-vs-Rest 

• Training 

– K classifiers, one for each class 

– positive examples from class k 

– negative examples from all other classes 

• Prediction 

– if no unique classification, use maximization 

• Problems 

– imbalanced training sets 
• variant: set target of negative class to -1/(K-1) 

– inconsistent results 
• variant: train K SVMs simultaneously (large problem!) 
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One-vs-One 

• Training 

– train K(K-1)/2 binary classifiers, one for each pair of classes 

• Prediction 

– select class with max number of votes 

• Problems 

– inconsistent answers 

– huge training cost 

– huge prediction cost 
• variant: DAGSVM 

– extension: error-correcting codes 



SVMs for Regression 
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• Linear regression regularized error function 

 

 

•  ²-insensitive error function 

 

 

•  ²-insensitive regularized error function 

SVM Regression Error Function 
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 ²-Insensitive vs. Quadratic Error 
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• Slack variables 

– two slack variables for each data point 

• ²-tube 

– targets must lie with the ²-tube (plus/minus slack) 

 

 

• SVM quadratic programming 

– minimize 
 

 

– subject to 

SVMs Regression Formulation 
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²-Tube Example 
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SVM Lagrangian 

• SVM Lagrangian 

 

 

 

 

• Gradients to zero 
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SVM Dual Lagrangian 

• SVM dual Lagrangian 

– maximize 

 

 

 

 

 

– subject to 

 

 

– box constraints! 
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• Prediction 

 

 

• Observations 

– from KKT conditions 

– non-zero coefficients 
for points outside the tube 
or on the tube boundary 

– for each data point,  
one coefficient is zero (or both) 

SVM Regression Prediction 
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v-SVM for Regression 

• v-SVM dual Lagrangian 

– maximize 

 

 

 

 

 

– subject to 
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SVM Regression Example 

Gaussian 
kernels 
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Today 

• Relevance Vector Machines 

• RVMs for Regression 

• RVMs for Classification 



Relevance Vector Machines 



M. G. Lagoudakis         TUC ECE, Machine Learning, Spring 2023       Page 4 

From SVMs to RVMs 

• SVM limitations 

– no probabilistic interpretation of the output 

– no natural extension to multiple classes 

– difficulty in tuning key parameters (C, v, ²) 

– kernel functions must be positive definite 

– solutions are not so sparse 

• Relevance Vector Machines (RVMs) 

– Bayesian sparse kernel technique 

– applies to both regression and classification 

– overcomes the principal SVM limitations 

– leads to sparser solutions with comparable generalization 



RVMs for Regression 
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• Linear regression model 
– for some noise parameter ¯ and a set of basis functions Á, 

the predictive distribution is 

 

 

• RVM regression model 

 
– a total of M = N+1 parameters (wM = b) 

– no restriction to positive definite kernels 

– kernels are utilized as basis functions (features) 

– no necessity for centering on the data points 

RVM Regression Model 
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Recall: Bayesian Linear Regression 

• Common conjugate prior over w 

 

• Likelihood 

 

• Posterior  

 

 

• Reminder: General case 
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RVM Probabilities 

• Likelihood 
 

 

• ARD Prior 

 

– zero-mean Gaussian with a different precision for each weight 

– most precisions go to infinity, giving zero weights (sparsity) 

• Posterior 
 

 

–  © is the NM design matrix with ©nM=1 (could be K), A = diag(®i) 
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Recall: Maximizing the Evidence 

• Iterative maximization 
– give arbitrary values to ® and ¯  and iterate until convergence 

– step I: given ® and ¯, compute γ and mN 

 

 

 

– step II: given γ and mN, compute ® and ¯  
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Evidence Approximation for Parameters 

• Marginal likelihood 
 

 

• Log marginal likelihood 

 

 

• Iterative estimation 
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RVM Predictive Distribution 

• Prediction 
– given the optimized hyperparameters ®*, ¯* 

 

 

 

– where 

 

 

 

– many points have zero weight and can be omitted  

– points with non-zero weight are called relevance vectors  
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RVM Regression Example 

Gaussian 
kernels 
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Comparison to SVM Regression 

Gaussian 
kernels 
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Comparison: RVM vs. SVM 

Gaussian 
kernels 

with γ=0.30 



RVMs for Classification 
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RVM Logistic Regression Model 

• Logistic regression model 
– for targets t in {0,1} 

 

 

• RVM logistic regression model 
 

 

– a total of M = N+1 parameters (wM = b) 

– kernels are utilized as basis functions (features) 

• ARD Prior 
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Posterior 

• Posterior 
– integrating out w for the predictive distribution is intractable! 

– idea: apply Laplace approximation! 

• Log posterior 
 

 

 

• IRLS for the mode w* and the negative Hessian 

 

 

– B is a NN diagonal matrix with elements bn = yn (1-yn)  
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Evidence Approximation 

• Laplace approximation 
 

 

• Marginal likelihood 

 

 

• Iterative estimation 

 

• Log marginal likelihood 
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RVM Classification Example 

Gaussian 
kernels 

with γ=0.45 
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RVM Posterior Probabilities 

Gaussian 
kernels 

with γ=0.45 
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Comparison to v-SVM Classification 

Gaussian 
kernels 

with γ=0.45 
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Comparison: RVM vs. SVM 

Gaussian 
kernels 

with γ=0.30 
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RVM Multi-Class Classification 
• Prediction 

– K models, one for each class, combine using softmax 
 

 

• Log likelihood 
 

 

– 1-of-K coding for each data point 

– Laplace approximation to optimize the hyperparameters 

– mode and MKMK Hessian found through IRLS 

– cons: additional factor of K3 to computational cost of training 

– pros: sparser models, faster prediction, no cross-validation 
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Today 

• Principal Component Analysis 

• PCA Applications 

• PCA for High-Dimensional Data 
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Motivation 

• Synthetic data 

– embed a 6464 image of a handwritten digit into 100100 

– random choices in x-translation, y-translation, µ-rotation 

 

 

 

• Dimensionality 

– each resulting image is a point in a 10,000-dimensional space 

– however, there are only three degrees of freedom of variability 

– data live in a non-linear manifold of intrinsic dimensionality 3 

– question: is it possible to identify these intrinsic dimensions? 



Principal Components Analysis 
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Principal Components Analysis (PCA) 

• PCA 

– technique for dimensionality reduction, lossy compression, 
feature extraction, data visualization, … 

– also known as the Karhunen-Loeve transform 

• Definitions 

– orthogonal projection of the data onto the lower-dimensional 
principal subspace, so that variance in projection is maximized 

– linear projection that minimizes the average projection cost 
(mean squared distance between data and their projections) 

• Data and Goal 
– {xn}, n=1,…,N, of dimension D projected to M<D dimensions 
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PCA Projection Example 
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Maximum Variance Formulation 
– for M=1, select a D-dimensional unit vector u1 (u1

T u1=1) 

• Means and variance 
– the projection of data point xn onto vector u1 is u1

T xn  

– sample mean                           and projection mean 

– variance of projected data 
 

 

• Optimization 

– form Lagrangian:  

– set derivative to zero:                    and multiply by u1
T: 

– variance maximized for u1 = eigenvector of largest eigenvalue 
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Maximum Variance Formulation 

• Generalization 

– incrementally … 

– … choose a new orthogonal direction compared to previous 

– … maximizing the variance in the projection 

• Algorithm 
– compute mean and covariance matrix S of the data 

– find the M eigenvectors of S from M largest eigenvalues 

• Complexity 

– full eigenvector decomposition of DD matrix : O(D3) 

– power method (only largest M eigenvalues/vectors): O(MD2) 
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Minimum Error Formulation 
– complete, orthonormal D-dimensional basis {ui} (ui

T uj=δij)  

• Projection 

– data can be re-written as                           where 

– approximate the full projection using only first M dimensions 

 

 

– {zni} for each data point, {bi} constants common for all data 

• Optimization 

– squared error:  

– setting derivative wrt znj to zero:  

– setting derivative wrt bj to zero:  
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Minimum Error Formulation 

• Substitution 

 

 

 

– must minimize wrt {ui} under the orthogonality constraints 

• Optimization 

– Lagrangian for two dimensions:  

– set derivative to zero:                         in general:  

– squared projection error:  
 

– minimized when choosing the D-M smallest eigenvalues 



PCA Applications 
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PCA Approximate Representation 

• Data approximation 
– each data point xn can be approximated as 

 

 

 

 

– approximate representation is M-dimensional 

– need to keep the mean of the data and the M eigenvectors 

– O(NM+D+MD) space for N data points 

– compare to original O(ND) space requirement 
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PCA Compression Example 

– data set: images (2828=768 pixels) of the handwritten digit 3 

• Principal components 
 

 

 

 

• Reconstruction 
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PCA Compression Example Error 
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PCA on Human Faces 
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PCA Data Preprocessing 

• Standardizing the data 

– linear scaling: each variable has zero mean and unit variance 

– standardized data covariance matrix 
 

 

– ½ij = 1 for perfect correlation, ½ij = 0 for no correlation 

• PCA standardization (“data whitening”) 

– standardizing data + different variables become decorrelated 
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PCA Data Preprocessing Example 
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PCA vs. Fisher’s Discriminant 

PCA 

Fisher 



PCA for High-Dimensional Data 
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PCA for High-Dimensional Data 

• Less data than dimensions 

– data sets with fewer data points (N) than dimensions (D) 

– example: a few hundred high-resolution color images 

– N<D defines a linear subspace with dimensionality at most N-1 

– in this case, at least D-N+1 eigenvalues are zero! 

– but … the naïve computational cost of O(D3) is prohibitive! 

• Reducing complexity 

– define ND matrix X with rows  

– covariance matrix  

– eigenvector equation 
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PCA for High-Dimensional Data 

• Subspace 

– define 

– then   

– eigenvector equation for the NN matrix 

– retrieve the original eigenvectors  
– multiply from left with XT 

– also, need to normalize to unit length 

• Approach 

– find eigenvalues and eigenvectors of matrix 

– retrieve the eigenvectors of matrix S 

– computational cost O(N3) instead of O(D3) 
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Today 

• Probabilistic PCA 

• Bayesian PCA 

• Kernel PCA 



Probabilistic PCA 
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Probabilistic vs. Conventional PCA 
• Conventional PCA 

– linear projection of data onto subspace of lower dimensionality 

• Probabilistic PCA 

– maximum likelihood solution of a probabilistic latent model 

• Advantages of probabilistic PCA 

– can be viewed as a constrained form of Gaussian distribution 

– a computationally efficient EM algorithm can be derived  

– missing values in the data set can be treated 

– mixtures of probabilistic PCA can be formulated 

– can be used to model class-conditional densities (classification) 

– can be used as a generative model to provide samples 
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Probabilistic PCA Formulation 

• Assumption 

– all marginal and conditional distributions are Gaussian 

• Principal subspace 
– define latent variable z for the principal component subspace 

– define a Gaussian prior p(z) over the latent variable z  

 

– define a Gaussian conditional p(x|z) for observed variable x  

 

– the columns of W define the principal linear subspace 

– the scalar ¾2 governs the variance of the conditional 

– generative view (D-dim x from M-dim z):  
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Probabilistic PCA Illustration 
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Recall Bayes’ Theorem for Gaussians 

• Given 

 

 

• we have 

 

 

• where 
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Bayes’ Theorem Application 

• Given 

 

 

• we have 

 

 

• where 
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Bayes’ Theorem Application 

• Given 

 

 

• we have 

 

 

• where 
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Towards Maximum Likelihood 

• Predictive distribution 
– marginal of the observed variable x : 

– Gaussian due to assumptions 

 

– rotation redundancy 
 

– inversion 
 

• Posterior distribution 

– Gaussian 
posterior covariance 

independent of x 
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Maximum Likelihood PCA 
– data set X = {xn} of observed data points 

• Log likelihood 
 

 
 

• Optimization 
– setting the derivative wrt ¹ to 0:  

– backsubstitution:  

– setting the derivative wrt W to 0: 

• LM: MM max eigenvalues of S, UM: DM eigenvectors, R: MM rotation 

– setting the derivative wrt ¾2 to 0:  

• average variance of discarded dimensions 
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Observations 
• Rotational invariance 

– the predictive density is independent of latent space rotations 

– for R=I, columns of W are eigenvectors scaled by  

– additive variances, for convolution of independent Gaussians 

– variance in direction of eigenvector ui has two contributions 

• a component from the projection of a unit-variance latent subspace 

• an isotropic contribution added to all directions 

• Data covariance 
– variance of predictive distribution along unit vector v: 

• orthogonal to latent subspace:  

• parallel to retained eigenvector: 

– extreme M=D:  
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Observations 
• Projection 

– conventional PCA projects points from D-space to M-space 

– probabilistic PCA can reverse the mapping (Bayes’ theorem) 

– points in data space can be summarized by  
• mean in latent space 

• covariance in latent space 

– in limit            , orthogonal projection: 

–            : the standard PCA model,            : shifted towards origin 

• Multivariate Gaussians 

– in general, D parameters for mean, D(D+1)/2 for covariance 

– full independence: D for mean, D for covariance, but loss! 

– probabilistic PCA: DM + 1 – M(M-1)/2 degrees of freedom 



Bayesian PCA 
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Choosing M  

• Ad-hoc 

– M=2 for visualization 

– check the eigenvalue spectrum and choose cut-off 

• Cross validation 

– try various values of M and evaluate using cross validation 

– select M giving the largest log likelihood on validation set 

• Bayesian approach  
– marginalize out the model parameters ¹, W, and ¾2  

– variational framework to approximate hard marginalizations 

– evidence approximation, for large data set and peaked posterior 
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Automatic Relevance Determination 

• ARD prior 
– independent Gaussian prior over each column of W  

– each Gaussian has its own precision hyperparameter ®i  

 

 

• Optimization 
– values of ®i are found iteratively 

– maximizing marginal likelihood after integrating W out 

– most ®i are driven to infinity and corresponding wi to zero 

– sparsity: number of finite-valued ®i gives value for M  
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Laplace Approximation 

• Marginal likelihood 

 
– no prior for ¹ and ¾2, parameters to be estimated 

• Iterative optimization (EM) 

E-step 

M-step 
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Bayesian PCA Example (W) 

ML probabilistic PCA Bayesian PCA 



Kernel PCA 
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From Conventional to Kernel PCA 
– data set X = {xn} of observed data points in D dimensions 

– assume that the sample mean of the data is zero: 

• Conventional PCA 
– principal components defined by the eigenvectors ui of S  

 

 

• Kernel PCA 
– non-linear transformation Á(x) to M-dimensional feature space 

– assume that sample mean of projection is zero: 

– standard PCA in feature gives nonlinear components in input 
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Kernel PCA Illustration 
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Kernelization 

 
– the M eigenvectors  vi of C  

 

 

 

 

– kernel function  

 
 

– NN Gram matrix K 

– vectors ai with ain, n=1,…,N  
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Principal Component Projection 

• Coefficient normalization 
 

 

• Projection 
 

 

– at most D linear principal components in input space 

– at most M linear principal components in feature space 

– the dimensions of feature space (M) may exceed D (infinite?) 

– the number of non-zero eigenvalues cannot exceed N  

– thus, at most max{M,N} principal components in feature space 
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Zero-Mean Assumption in Feature 

1N: NN matrix with elements 1/N 

Evaluate the new Gram matrix 
and perform PCA  

on the new Gram matrix! 
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Kernel (Gaussian) PCA Example 
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Properties 
• Pros 

– use of a large library of kernel functions 

– non-linear projections in input space 

• Cons 

– performing PCA on a NN matrix, as opposed to a DD matrix 

– in practice, approximations are used 

• Compression?  

– PCA: approximate with L<D eigenvectors 

– Á(x) maps x in D-dimensional manifold in M dimensions 

– projection of points in feature space onto linear PCA subspace 
may not lie on that D-dimensional manifold! no pre-image x! 
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Recall: Machine Learning 

• Supervised Learning 
– set of training data with inputs and targets 

– classification, regression, … 

• Unsupervised Learning 
– set of training data with inputs, but without targets 

– clustering, density estimation, dimensionality reduction, … 

• Reinforcement Learning 
– set of training trials of interaction with feedback by a critic 

– value function, decision policy, exploration vs. exploitation, … 

• Learning Theory 
– theoretical investigations: what can be learned? how fast? 
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Today 

• Decision Making under Uncertainty 

– Sequential Decision Making 

– Markov Decision Process (MDP) 



Sequential Decision Making 

Decisions after decisions … 
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Sequential Decision Making 

Action 

State 
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Planning or Learning? 

Known Model 

Uncertainty in the process 

Unknown Model 

Uncertainty in the process 
and about the process 

Planning Learning 

Action 

State 

Action 

State 

? 
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Decision Making for a Purpose 

Action 

State 

Reward 
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Navigation in the Grid World 

• Grid World 
– 11 states 

– 4 actions 

– uncertainty 

– collisions 

– r = +1 terminal 

– r = –1 terminal 

– r = –0.04 / step 

• Classical planning 
– deterministic plan: [Up, Up, Right, Right, Right] 

– probability of success: 0.85 + 0.14  0.8 = 0.32776  

START 
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Plan Execution [↑,↑,→,→,→] 

0.1 

0.8 

0.1 1.0 0.02 

0.24 

0.09 

0.64 

0.01 

0.026 

0.258 

0.034 

0.088 

0.073 

0.512 

0.008 

0.001 

??? 

??? 

??? 

??? 

??? 

??? 

??? 

??? 

0.4097 

0.0016 

??? 

??? 

??? 

??? 

??? 

??? 

??? 

??? 

??? 

??? 

0.32776 



M. G. Lagoudakis         TUC ECE, Machine Learning, Spring 2023       Page 10 

R(s)=-0.04 

Optimal Policies 

• Policy π 

– action choice (decision making) in every possible state 

• Optimal policy π* 
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Optimality Metrics 

• Horizon 

– finite  non-stationary policies 

– infinite  stationary policies 

• Stationary metrics over state sequences 

– additive rewards 
• Uh([s0, s1, s2…]) = R(s0) + R(s1) + R(s2) + … 

– discounted rewards 
• Uh([s0, s1, s2…]) = R(s0) + γR(s1) + γ2R(s2) + … 

• discount factor γ in (0,1] 

– average reward 
• Uh([s0, s1, s2…]) = limT [ ( R(s0) + R(s1) + R(s2) + … + R(sT) ) / T ] 
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Markov Decision Process (MDP) 

• MDP (S, A, P, R, γ, D) 

– S: state space of the process 

– A: action space of the process 

– P: transition model, P(s’ | s, a) 

– R: reward model, R(s, a) 

– γ: discount factor, 0  γ  1 

– D: initial state distribution 

• Markov property 

– next state and reward are independent of history 
 

note: the reward model can also be defined as R(s) or R(s,a,s’) 
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Simple MDP: Grid World 

• Grid World 
– |S| = 11 (all cells except [2,2]) 

– |A| = 4  (, , , ) 

– P(s’ | s, a) 
• non-zero probability of transition 

to at most 3 other states 

• zero probability to all others 

– R(s, a)  
• R = +1 or R = –1 in terminal states independently of the action 

• R = –0,04 in all other states independently of the action 

– γ = 1 

– D : probability 1 for [1,1], probability 0 for all others 

START 
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Simple MDP: Recycling Robot 

[Sutton and Barto, 1998] 
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Yet Another Example MDP 
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MDPs 

• Episodes 

 

 

• Expected total discounted reward (utility) 

 

 

• Optimization goal 
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• Deterministic policy 

 

• Stochastic policy 

 

• Expected total discounted reward (utility) 

 

 

• Optimal policy 

Policies 
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Value Functions 

• State Value Function V 

 

 

 

 

• State-Action Value Function Q 
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Example: Grid World 

Policy π(s) 

State Value Function Vπ(s) 
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Bellman Equation for V 

– a linear system of size (|S||S|) with unknowns Vπ 

– can be solved directly or iteratively 
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Bellman Equation for Q 

– a linear system of size (|S||A||S||A|) with unknowns Qπ 

– can be solved directly or iteratively 
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Greedy Policy Improvement 

• Improved (greedy) policy over V 

 

 

 

 

• Improved (greedy) policy over Q 



M. G. Lagoudakis         TUC ECE, Machine Learning, Spring 2023       Page 23 

Greedy Policy Improvement Example 

Vπ(s1) = 10 

Vπ(s2) = 5 

s 

s1 

s2 

Action 1 

0.5 

0.5 

Action 2 

R(s , a1)=1 

s 

s1 

s2 

0.7 

0.3 

R(s , a2)=0.5 

Qπ(s, a1) = 8.5 Qπ(s, a2) = 9.0 

π’(s) = argmax{ 1 + 1  (0.510+0.55), 0.5 + 1  (0.710+0.35) } = a2 

γ = 1 

π’(s) = argmax{ 8.5, 9.0 } = a2 
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Bellman Optimality Equation for V 

– a non-linear system of size (|S||S|) with unknowns Vπ* 

– can be solved iteratively 
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Bellman Optimality Equation for Q 

– a non-linear system of size (|S||A||S||A|) with unknowns Qπ* 

– can be solved iteratively 
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Variations of Bellman Equations 
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Spectrum of Sequential Decision Making 
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Applications of MDPs 

•Economics/Operations Research 

–Fleet maintenance (Howard, Rust) 

–Road maintenance (Golabi et al.) 

–Packet retransmission (Feinberg et al.) 

–Nuclear plant (Rothwell & Rust) 

•EE/Control 

–Missile defense (Bertsekas et al.) 

–Inventory management (Van Roy et al.) 

–Football play selection (Patek & Bertsekas) 

•Agriculture 

–Herd management (Kristensen, Toft) 

•AI/Computer Science 

–Robot control (Koenig & Simmons, Thrun  
et al., Kaelbling et al., …) 

–Air campaign planning (Meuleau et al.) 

–Elevator control (Barto & Crites) 

–Computation scheduling (Zilberstein et al.) 

–Control and automation (Moore et al.) 

–Spoken dialogue management (Singh et al.) 

–Algorithm selection (Lagoudakis et al.) 

•Telecommunications 

–Cellular channel allocation (Singh & Bertsekas) 

–Network routing (Boyan & Littman) 
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Today 

• Planning under Uncertainty 

– solving MPDs 

– value iteration 

– policy iteration 

– linear programming 



Planning under Uncertainty 

Finding Optimal Policies by Solving MDPs 
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• Idea 

– iterative solution of the Bellman optimality equations 

– extraction of optimal policy through greedy improvement 

• Value Iteration for V 

 

 

 

• Value Iteration for Q 

Value Iteration 
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Value Iteration for V 
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Value Iteration for Q 
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Grid World: Value Iteration 
– γ=1 and R(s)=-0.04 for non-terminal states 

• Computation of V(s) for s=(1,1) 

– V(1, 1) = max{ -0.04 +γ[0.8V(1, 2) + 0.1V(2, 1) + 0.1V(1, 1)], 
             -0.04 +γ[0.9V(1, 1) + 0.1V(1, 2)], 
             -0.04 +γ[0.9V(1, 1) + 0.1V(2, 1)], 
             -0.04 +γ[0.8V(2, 1) + 0.1V(1, 2) + 0.1V(1, 1)] } 
 

Best choice in state (1,1) 
is action UP 
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Grid World: Value Iteration Convergence 

– Grid World with γ=1, R(s)=-0.04 for non-terminal states 
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Convergence of Value Iteration 

• Contraction f 

– the images of f are “closer” to each other than its arguments 

– contraction f:  f(x)-f(y)   β  x-y ,   β<1 

• Contraction properties 

– every contraction has a unique fixed point 

– the image is closer to the fixed point than the argument 

• Value iteration 

– Bellman*: right-hand side of the Bellman optimality equation 

– the Bellman* optimality operator is a contraction under  .  

–  Bellman*(V)-Bellman*(V’)   γ  V-V’  
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Errors in Value Iteration 

• Value error 
– bounded reward function: |R(s)|  Rmax 

– bounded value function: |V(s)|  Rmax /(1-γ) 

– maximum initial error: V-V*   2Rmax/(1-γ) 

– num of iterations Ν for error ε:  log(2Rmax/ε(1-γ))/log(1/γ) 

– Ν increases exponentially as γ goes to 1 

– termination condition: Vi+1-Vi  < ε(1-γ)/γ   Vi+1 -V*  < ε 

• Policy loss 
– Vπi-V*  the largest loss if policy πi is executed instead of π* 

– V-V*  < ε  Vπi-Vi  < 2εγ/(1-γ) 

– an optimal policy may be obtained before convergence 



M. G. Lagoudakis         TUC ECE, Machine Learning, Spring 2023       Page 11 

Grid World: Error in Value Iteration 

Grid World 
with γ=0,9 
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Policy Iteration 
• Idea: iterate 

– policy evaluation: solution of the Bellman equations 

– policy improvement: greedy action selection 

• Policy Iteration for V 

 

 

 

• Policy Iteration for Q 
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Policy Iteration for V 
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Policy Iteration for Q 



M. G. Lagoudakis         TUC ECE, Machine Learning, Spring 2023       Page 15 

Policy Iteration Extensions 

• Modified Policy Iteration 
– policy evaluation (solution of linear system) is expensive, Ο(|S|3) 

– idea: partial iterative computation of Vπ or Qπ 

– small number k of Gauss-Seidel-type iterations, kΟ(|S|2) 

 

 

 

• Asynchronous Policy Iteration 
– idea: apply evaluation/improvement only to subsets of states 

– significant decrease in computational complexity 

– focus at points of interest 
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Linear Programming Approach 

• Idea 
– optimize the values of V subject to some constraints  

– constraint: value V cannot be less than any Q value in each state 

– objective: minimize each V to match the best Q value 

• Linear program 
– minimization of linear objective function (sum of |S| variables) 

– subject to |S||A| constraints (Bellman equation for V) 

– solution: optimal value function Vπ* 

• Complexity 
– weakly polynomial (pseudo-polynomial) algorithm  

– polynomial in |S|, |A|, and the number of bits B for accuracy 
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Linear Programming MDP Algorithm 
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Today 
• Reinforcement Learning (RL) 

– definition 

– process modeling 

– prediction and control 

• Prediction 

– Adaptive Dynamic Programming (ADP) 

– Direct Utility Estimation (DUE) 

– Temporal Difference (TD) learning 

• Control 

– SARSA 

– Q-learning 

 



Reinforcement Learning 

Learning from Mistakes! 
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Reinforcement Learning 

Learn how to take actions in each state of the process  
so as to maximize in the long-term the cumulative reward! 

• reward reinforces good decisions (and penalizes the bad ones) 

• learn from experience: (state, action, reward, next state)-samples 

• samples taken from the process or from a generative model 

Action 

State 

Reward 
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Reinforcement Learning Setup 

• Known 

– states, actions, rewards 

• Unknown 

– transition model, reward model 

• Goal 

– a good (or even optimal) policy 

• Significance 

– learning without knowing what you are learning 

– generic approach for agent design  

– very hard problem 
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Reinforcement Learning Problems 

Learn to predict the expected total 
reward for a fixed action policy 

[ Passive Reinforcement Learning ] 

Prediction 

Action 

State 

Reward ? π 

$? 

Learn to control the process to 
maximize the expected total reward 

[ Active Reinforcement Learning ] 

Control 

Action 

State 

Reward ? 
π? : $$$ 
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Reinforcement Learning Methodology 

model-based learning 

Action 

State 

Reward ? 
model-free learning 

Action 

State 

Reward ? 
Action State 
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Reinforcement Learning Environment 
competitive cooperative 

sin
gle-agen

t 
m

u
lti-agen

t 



Process Modeling 

Markov Decision Processes 
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Markov Decision Process (MDP) 

• MDP (S, A, P, R, γ, D) 

– S: state space of the process 

– A: action space of the process 

– P: transition model, P(s’ | s, a) 

– R: reward model, R(s, a) 

– γ: discount factor, 0  γ  1 

– D: initial state distribution 

• Markov property 

– next state and reward are independent of history 
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Value Functions 

• State Value Function V 

 

 

 

 

• State-Action Value Function Q 
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Value Function Representation 

• Exact 
– a table with a distinct value/entry for each case 

– V : one entry for each s, O(|S|) space 

– Q : one entry for each (s,a), O(|S||A|) space 

– infeasible for realistic problems 

• Approximate 
– approximate the value function with a function approximator 

– e.g. neural networks, polynomials, radial basis functions, ... 

– need only enough space to store the approximator parameters 

– equations and algorithms become harder to deal with 

– convergence properties are compromised 
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Linear Value Function Approximation 

• Basis Functions (features) φ 

– non-linear, in general 

– linearly independent 

– weights/parameters wπ 

– k << |S| for V and k << |S||A| for Q 

– properties: easy to design, engineer, interpret, modify, debug, … 

– examples: polynomials, radial basis functions, tile coding, … 



Prediction 

Passive Reinforcement Learning 
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The Prediction Problem 

• Given 

– a fixed deterministic (or, stochastic) policy π 

– experience samples (s,a,r,s’) [typically, a=π(s)] 

• Goal 

– to predict the performance of policy π 

– to evaluate policy π 

– to learn the value function Vπ(s) of policy π 

• State value function 
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Adaptive Dynamic Programming 

• Adaptive Dynamic Programming (ADP) 

– model-based learning 

– learns the transition model, P( s’ | s, π(s) ) 
• transition frequency counting 

– learns the reward model, R(s) 
• running average for each state 

– finds Vπ through the Bellman equation and the full model 

– converges to the true model in the limit of infinite uniform samples 

• Properties 

– huge space complexity 

– excellent use of samples 
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ADP Performance 

– fast convergence 

– each sample takes significant processing time 
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Trials in the Grid World 

• Sample trials 
– (1,1)-.04(1,2)-.04(1,3)-.04(1,2)-.04(1,3)-.04(2,3)-.04(3,3)-.04(4,3)+1 

– (1,1)-.04(1,2)-.04(1,3)-.04(2,3)-.04(3,3)-.04(3,2)-.04(3,3)-.04(4,3)+1 

– (1,1)-,04(1,2)-,04(1,3)-,04(2,3)-,04(3,3)-,04(3,2)-,04 (4,2)-1 
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Monte-Carlo Learning 

• Direct Utility Estimation [Widrow and Hoff, 1960] 

– utility = expected total (discounted) reward from state s 

– each episode (trial) gives one sample for each state visited 
• (1,1)-.04(1,2)-.04(1,3)-.04(1,2)-.04(1,3)-.04(2,3)-.04(3,3)-.04(4,3)+1 

•    ↑             ↑             ↑              ↑             ↑             ↑              ↑             ↑ 

• 0.72          0.76         0.80          0.84          0.88         0.92         0.96            1    (γ=1) 

– estimation: mean of all samples for each state 

– learning: maintaining a running mean for each state 

– convergence to the true values in the limit of infinitely-many trials 

• Properties 
– ignores the dependencies between values (Bellman equation) 

– searches a larger space of functions and converges at a slow rate 
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Temporal Difference Learning 
• Basic idea 

– local value update taking into account dependencies 

– (linear) Bellman equation 

• Temporal Difference (TD) Learning 

– for each sample (s,a,r,s’) 

 
 

– α = learning rate (decreased over time to avoid “oscillations”) 

– if s’ is a terminal state, we typically consider  
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Temporal Difference Learning 

V ¼(s) = R(s; ¼(s)) + °
X

s02S
P(s0js; ¼(s)) V ¼(s0)

Vπ(s) 

Vπ(s1) 

Vπ(s2) 

Vπ(s3) 

Vπ(s4) 

Vπ(sn) 

+ r + γ  
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Temporal Difference Learning Algorithm 
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TD Performance 

– faster than DUE, but more oscillatory convergence 

– advantage: no need to wait until the end of the episode 

– advantage: each sample is processed in little time 
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TD with Approximation 
• Generic approximation 

– generic (non-linear) approximation, e.g. neural network 

– can only update the parameters of the approximator 

– update the parameters according to the temporal difference 

– use the gradient to determine the appropriate change 

update : w¼
i Ã w¼

i + ®
@ bV (s;w¼)

@w¼
i

³
r + °bV (s0;w¼)¡ bV (s;w¼)

´

terminal : w¼
i Ã w¼

i + ®
@bV (s;w¼)

@w¼
i

³
r¡ bV (s;w¼)

´
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TD with Linear Approximation 

• Linear approximation 

– linear combinations of (non-linear) basis functions 

– the gradient is easily computable 

 

update : w¼
i Ã w¼

i + ®Ái(s)
³
r + °Á(s0)>w¼ ¡ Á(s)>w¼

´

terminal : w¼
i Ã w¼

i + ®Ái(s)
³
r¡ Á(s)>w¼

´
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TD with Linear Approximation 



Control 

Active Reinforcement Learning 
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The Control Problem 
• Given 

– experience samples (s,a,r,s’) from the unknown process 

• Goal 

– to learn a good (optimal, if possible) policy π 

• Idea 

– a better policy can be retrieved from a state-action value function 

• State-action value function 

 

• (Improved) policy 
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Greedy Policy Improvement 

• Greedy (improved) policy over V 

 

 

 

 

• Greedy (improved) policy over Q 
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Greedy Policy 

– executes the best action according to the estimated value function 

– non-optimal initial choices may disoriented exploration 

– leaves areas of the state space unexplored! 

– solution: optimistic initialization, exploration 
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Exploration vs. Exploitation 

• Exploitation 

– use the greedy policy to maximize return in the short-term 

• Exploration 

– choose random actions to discover things in the long-term 

• Exploration vs. Exploitation Dilemma  

– exploration or exploitation? 

• Optimal balance 

– Greedy in the Limit of Infinite Exploration (GLIE) 
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• Main idea 

– local update exploiting dependencies from the Bellman equation 
 

 

• SARSA [Sutton, 1985] 

– for each sample (s,a,r,s’), where typically α=π(s): 
 

 

– policy π gradually becomes greedy (typically, 1-ε exploration) 

– if s’ is terminal state, the update (typically) becomes: 

SARSA (s,a,r,s’,a’) 
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• Generic approximation architecture 

– generic (non-linear) architecture, e.g. neural network 

– only the parameters of the architecture can be updated 

– update the parameters based on the temporal difference 

– use the gradient to determine the appropriate change 

SARSA with Approximation 
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• Linear approximation architecture 

– linear combination of basis functions 

– the gradient can be easily computed 

SARSA with Linear Approximation 
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SARSA Properties 

• Advantages 
– processes each sample immediately  

– minimal update cost per sample 

• Disadvantages 
– requires a huge number of samples 

– requires careful schedule for the learning rate 

– poses constraints on sample collection (on-policy) 

– requires careful handling on the policy greediness 

– makes minimal use of each sample 

– the ordering of samples influences the outcome 

– exhibits instabilities under approximate representations 



M. G. Lagoudakis         TUC ECE, Machine Learning, Spring 2023       Page 36 

• Main Idea 

– local update exploiting dependencies from the optimality equation 

 

 

• Q-Learning [Watkins, 1989] 

– for each sample (s,a,r,s’): 

 

 

– if s’ is a terminal state, the update (typically) becomes: 

Q-Learning 
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• Generic approximation architecture 

– generic (non-linear) architecture, e.g. neural network 

– only the parameters of the architecture can be updated 

– update the parameters based on the temporal difference 

– use the gradient to determine the appropriate change 

Q-Learning with Approximation 
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• Linear approximation architecture 

– linear combination of basis functions 

– the gradient can be easily computed 

Q-Learning with Linear Approximation 
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Q-Learning Properties 

• Advantages 

– processes each sample immediately  

– minimal update cost per sample 

– poses no constraints on sample collection (off-policy) 

• Disadvantages 

– requires a huge number of samples 

– requires careful schedule for the learning rate 

– makes minimal use of each sample 

– the ordering of samples influences the outcome 

– exhibits instabilities under approximate representations 
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Today 

• Prediction 

– least-squares TD (LSTD) 

• Control 

– least-squares policy iteration (LSPI) 

– rollout classification policy iteration (RCPI) 

– extension to continuous action spaces 

• Experimentation 

 



Prediction 

Passive Reinforcement Learning 
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The Prediction Problem 

• Given 

– a fixed deterministic (or, stochastic) policy π 

– experience samples (s,a,r,s’) [typically, a=π(s)] 

• Goal 

– to predict the performance of policy π 

– to evaluate policy π 

– to learn the value function Vπ(s) of policy π 

• State value function 
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Temporal Difference Learning 

V ¼(s) = R(s; ¼(s)) + °
X

s02S
P(s0js; ¼(s)) V ¼(s0)

Vπ(s) 

Vπ(s1) 

Vπ(s2) 

Vπ(s3) 

Vπ(s4) 

Vπ(sn) 

+ r + γ  
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Least-Squares Temporal Difference 

– TD is trying to solve a linear system (Bellman) incrementally 

• Idea 
– collect all data and solve the (sampled) Bellman equation at once 

– the true value function satisfies the fixed point property 

• Linear architectures 
– try to find the best point in the space of approximator parameters 

– enforce the fixed point property under orthogonal projection 

– solution is a fixed-point approximation to the true value function 

• Properties 
– efficient use of all samples at once 

– elimination of learning rate, schedules, oscillations, ... 
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LSTD Algorithm 
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LSTD Performance 

Chain Walk from [Boyan, 2000] 



Control 

Active Reinforcement Learning 
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The Control Problem 
• Given 

– experience samples (s,a,r,s’) from the unknown process 

• Goal 

– to learn a good (optimal, if possible) policy π 

• Idea 

– a better policy can be retrieved from a state-action value function 

• State-action value function 

 

• (Improved) policy 
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Least-Squares Policy Iteration 

• Problem 
– SARSA attempts to solve a (changing) linear system incrementally 

– LSTD ideas cannot be applied because of changing policy 

– Q-Learning attempts to solve a non-linear system incrementally 

– LSTD ideas cannot be applied because of non-linearity 

• Idea 
– exploit policy iteration (evaluation – improvement) 

– use a linear architecture for efficient representation 

– LSTDQ: variation of LSTD for efficient policy evaluation 

– implicit representation of improved policies (greedy improvement) 

– exploitation of the same sample set in all iterations 
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Policy Iteration 

Value Function

Qπ

Policy
π

Policy Evaluation
(Critic)

Policy Improvement
(Actor)

Model

Θ(|S|) space

Θ(|S||A|) space
O(|S|3|A|3) time O(|S||A|) time
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Approximate Policy Iteration 
Approximate

Value Function

Qπ

Approximate
Policy

π

Value Function
Projection

Policy Improvement
(Actor)

^

^

Policy Evaluation
(Critic)

Policy 
Projection

Model

^

δ

ε
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The Key Idea of LSPI 
Approximate

Value Function

Qπ

Approximate
Policy

π

Value Function
Projection

Policy Improvement
(Actor)

^

^

Policy Evaluation
(Critic)

Policy 
Projection

Model

^

δ

ε

Samples
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Least-Squares Policy Iteration 

Approximate

Value Function

Linear architecture

Qπ = φTw

Policy

Greedy policy

over Qπ 

Policy

Improvement

Maximization

^

^

Policy Evaluation

and Projection

LSTDQ

Samples
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Fixed Point Approximation for Q 
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Orthogonal Projection 
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The LSPI Algorithm 



M. G. Lagoudakis         TUC ECE, Machine Learning, Spring 2023       Page 19 

LSPI in a Nutshell      
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LSPI Properties 

• Properties 
– learns policies of bounded quality 

– is stable; does not diverge 

– makes efficient use and reuse of training samples 

– handles successfully large scale problems 

– allows great flexibility in choosing/using basis functions 

– poses no restrictions on sample collection 

– it is simple and easy to implement 

• Limitations 
– cannot guarantee convergence to the optimal solution 

– with badly distributed samples, the iteration may oscillate 

– with insufficient basis functions, it may converge to a poor policy 
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Policy as Classifier 

• Deterministic policy : maps states to actions 

• Multi-class classifier : maps inputs to classes 

classifier 
(policy) ..

. 

classes 
(actions) 

input 
(state) 

a1 

a2 

a3 

a|A| 

s 

Any deterministic policy can be represented as a multi-class classifier 
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Policy Learning as Classifier Learning 

• Input 

– examples of the target policy at a subset of states 

• Learner 

– your favorite classifier 

• Output 

– generalization of the target policy over the entire state space 

classifier s 

{(si,π(si)) | i=1,2,...,N} 

π(s) 
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Policy Iteration 

Value Function

Qπ

Policy
π

Policy Evaluation
(Critic)

Policy Improvement
(Actor)

Model
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Approximate Policy Iteration 

Approximate
Value Function

Qπ

Approximate
Policy

π

Value Function
Projection

Policy Improvement
(Actor)

^
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Policy Evaluation
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Approximate Policy Iteration 

Approximate
Value Function

Qπ

Approximate
Policy

π

Value Function
Projection

Policy Improvement
(Actor)

^
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Policy Evaluation
(Critic)
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Rollout Classification Policy Iteration 
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Rollouts 
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Action Domination 
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Filtering and Training Set 
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Classifier-Based API Algorithms 

• RCPI-SVM 

– SVMs for representing policies 

– support vectors direct the selection of rollout states 

• RCPI-RVM 

– RVMs for representing policies (sparser) 

– RVM regression for advantage function 

• Localized Policy Iteration (not covered here) 

– exploiting locality in policies 

– identification of the “ball” where action still dominates 

– ball-based classifier 
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Extension to Continuous Action Spaces 
• Binary Action Selection 

– fine discretization of continuous range and binary search 

– view of a continuous action as sequence of binary actions 

– generalizes to multi-dimensional action spaces 
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MDP Transformation 



Experimentation 

Put RL to work! 
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RL Experimentation 
• Application Domains 

– chain walk 

– inverted pendulum 

– bicycle balancing and riding 

– mountain car 

– acrobot 

– tetris 

– othello/reversi 

– simulated soccer 

– load balancing 

– recursive algorithm selection 
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N-State Chain Walk 

Walk along the chain and maximize the expected return! 

– S = {1, 2, 3, …, N} discrete positions, linearly ordered 

– A = {Left, Right} move left or move right 

– noise: 90% action success, 10% failure (opposite direction) 

– reward: +1 at selected (red) positions, 0 otherwise 

– γ = 0,9 
 

simple problem, fully solvable, ideal for comparisons 
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20-State Chain Walk: V Function 
•Samples 

–5000 random moves 

•Approximation 
–10 basis functions 

–4th degree polynomial 
  for each action 

•Results 
–initial policy: Left 

–V function over iterations 

–convergence: 8 iterations 

 

–exact: dotted line 

–LSPI: solid line 
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20-State Chain Walk: Policies 
•Samples 

–5000 random moves 

•Approximation 
–10 basis functions 

–4th degree polynomial 
  for each action 

•Results 
–initial policy: Left 

–policies over iterations 

–convergence: 8 iterations 

–outcome: optimal policy 

–Left: blue, Right: red 

–exact: top, LSPI: bottom 
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50-State Chain Walk: Q Function 
•Samples 

–10000 random moves 

•Approximation 
–10 basis functions 

–4th degree polynomial 
  for each action 

•Results 
–initial policy: Left 

–Q function over iterations 

–convergence: 6 iterations 

–exact: dotted line 

–LSPI: solid line 

–Left: blue, Right: red 
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50-State Chain Walk: Policies 
•Samples 

–10000 random moves 

•Approximation 
–10 basis functions 

–4th degree polynomial 
  for each action 

•Results 
–initial policy: Left 

–policies over iterations 

–convergence: 6 iterations 

–outcome: suboptimal policy 

–Left: blue, Right: red 

–exact: top, LSPI: bottom 
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50-State Chain Walk: Q Function 
•Samples 

–10000 random moves 

•Approximation 
–22 basis functions 

–10 uniform RBFs + constant 
  for each action 

•Results 
–initial policy: Left 

–Q function over iterations 

–convergence: 7 iterations 

–exact: dotted line 

–LSPI: solid line 

–Left: blue, Right: red 
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50-State Chain Walk: Policies 
•Samples 

–10000 random moves 

•Approximation 
–22 basis functions 

–10 uniform RBFs + constant 
  for each action 

•Results 
–initial policy: Left 

–policies over iterations 

–convergence: 7 iterations 

–outcome: optimal policy 

–Left: blue, Right: red 

–exact: top, LSPI: bottom 



M. G. Lagoudakis         TUC ECE, Machine Learning, Spring 2023       Page 42 

Inverted Pendulum 
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Pendulum: Learning Parameters 
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Pendulum: Results 

Q-learning 

LSPI 
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Pendulum: Optimal Policy 
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Pendulum: Optimal Actions 
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Pendulum: RCPI Learned Policies 
0.2% 0.3% 0.6% 1.0% 3.1% 5.5% 9.7% 17.0% 30.0% 
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Pendulum: Nao Robot Balancing 
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Bicycle Balancing and Riding 
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Bicycle Learning Parameters 

• Features 

– k=100 (20 basis functions for each action) 

 

 

 

• Samples 

– collected from random episodes  
• starting at a random state around the initial position 

• following a purely random policy for only 20 steps 

– only 20 minutes worth of operating time! 
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Bicycle Learning Results 
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Bicycle Learning Performance 
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Tetris 



M. G. Lagoudakis         TUC ECE, Machine Learning, Spring 2023       Page 54 

Tetris: Learning Parameters 
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Tetris: Results 
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Tetris: Handcoded and LSPI 

Handcoded 
Video 

LSPI 
Video 

https://www.youtube.com/watch?v=byW5mxhv4tc
https://www.youtube.com/watch?v=TVjErzBIY1o
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Tetris: Learned Weights 
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Othello/Reversi 

• states: ~1030 in 8x8 board, ~1047 in 10x10 board 

• actions: from 0 to a few dozens 

• noise: the unknown opponent, possibly random blocked cells 

• reward: score at the end of the game 

• known model: combine with minimax and α-β pruning 
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Othello/Reversi: Results 
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Othello/Reversi: Performance 
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Algorithm Optimization 
• Algorithm Selection 

• which algorithm to choose (out of many) for a given instance? 

• Recursive Algorithm Selection 
• recursive calls lead to a sequential (tree) decision problem 

• recursive algorithm selection: learn an algorithm selection policy 

• learn by solving a number of instances on the actual system 

• adapt to machine/cpu/memory/network (autonomic computing) 

• learned policy solves instances using combinations of algorithms 

• learned hybrid algorithm outperforms all individual algorithms 

• Problems 
• sorting, order-statistic selections, satisfiability 

• systematic heuristic search (A*, RBFS) 
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Algorithm Optimization: Results 



RL Connections 
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RL and (Un)Supervised Learning 
• Model-based RL 

– density estimation for learning models 

• Value Functions 

– dimensionality reduction for extracting features 

– feature spaces for approximating value functions 

– regression techniques for estimating values 

– … 

• Policies 

– classifiers for representing policies 

– density estimation for representing policies 

– … 
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Study 
• Books 

– R. Sutton and A. Barto, Reinforcement Learning: An Introduction, MIT Press, 
Cambridge 1998 

– D. Bertsekas and J. Tsitsiklis, Neuro-Dynamic Programming,  
Athena Scientific, Belmont, Massachusetts, 1996 

• Articles 
– L. Kaelbling, M. Littman, A. Moore, Reinforcement Learning: A Survey, Journal of 

Artificial Intelligence Research 4, 237–285, 1996 
– M. Lagoudakis, Value Function Approximation, in Encyclopedia of Machine 

Learning, Springer, 2010, pp. 1011-1021 
– S. Bradtke, A. Barto, Linear Least-Squares Algorithms for Temporal Difference 

Learning, Machine Learning, 22: 1-3, 33-57, 1996 
– M. Lagoudakis and Ronald Parr, Least-Squares Policy Iteration, Journal of 

Machine Learning Research 4, 1107-1149, 2003 
– M. Lagoudakis and Ronald Parr, Reinforcement Learning as Classification: 

Leveraging Modern Classifiers, Intl Conf on Machine Learning (ICML) 2003, p.424 
– V. Vasilikos and M. Lagoudakis, Optimization of Heuristic Search using Recursive 

Algorithm Selection and Reinforcement Learning, Annals of Mathematics and 
Artificial Intelligence, 60 (1-2), 2010. 
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Today 

• From Perceptrons to MLPs 

• Back Propagation 

• Deep Considerations 
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Neural Networks: the key idea 
• Linear models 

– the input-output mapping is linear 

• Linear models in features spaces 

– the input is transformed non-linearly in a feature space 

– the output is still linear in the parameters over the features 

• Beyond that? 

– endow the feature extractor with its own parameters 

 

–  repeat this process recursively, to create complex functions 

 

–  the key idea behind (deep) neural networks (NNs and DNNs) 
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Perceptron: XOR Function 



M. G. Lagoudakis         TUC ECE, Machine Learning, Spring 2023       Page 5 

Two-Layer Perceptron: XOR Function 
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Why do we need hidden layers? 

One Layer  
creates Linear 

boundaries 

Two Layers 
combine Linear 

boundaries 

Three or more Layers 
are able to create 
complex shapes 
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Activation Functions, Differentiable MLPs 

– the entire function is differentiable 

– the composition of such functions is differentiable 

– simply apply the chain rule repeatedly 

• Activation Functions 

– typically, non-linear (otherwise, no gain) 

– sigmoid σ(α) 

– tanh f(x) 

– ReLU (common choice) 
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Examples of Activation Functions 
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Softmax Activation Function 
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Multi-Layered Perceptrons 
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Learning Process of Neural Networks 

• The NN structure is predefined (inference model) 

• Learning process 
– The NN learns a specific task by adjusting its parameters (weights) 

from the correctly labeled training examples (supervised learning) 

• Adjusting the parameters 
– randomly initialize the weights 
– obtain a predicted output based on this network 
– if the output matches the real label, do not change the weights 
– if the output is larger than the real label,  

adjust the weights that contribute to large output values 
– if the output is smaller than the real label,  

adjust the weights that contribute to small output values 
– repeat the previous steps, until the error converges to a minimum  
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http://playground.tensorflow.org  

http://playground.tensorflow.org/
http://playground.tensorflow.org/


Backpropagation 
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Gradient Descent on the Cost Function 

• The key idea 
• adjust a model’s weights in response to the error it produces,  

until you can’t reduce the error any more 
 

• “How do the errors vary as the weights are adjusted?” 

• calculate how a change in weight affects a change in Error  

• first calculate how a change in activation affects a change in Error,  

• and then how a change in weight affects a change in activation 
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Gradient Descent on the Cost Function 

• Use a smooth cost function 
• helps figure out how to make small changes in weights and biases 

to get an improvement in the cost 
 

 

• Perform stochastic gradient descent  
• to guarantee reduction of cost 

Xi ← training inputs as a mini-batch 
(small set of m training inputs) 

A training epoch 
Train over a randomly chosen mini-
batch, then on another, until you 
exhaust all mini-batches [repeat] 
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The Backpropagation Algorithm 
• But…how to compute the gradient of the cost function? 
• Use the backpropagation algorithm! 
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The Backpropagation Algorithm 

L: number of layers; n total number of training examples x; y(x) desired output; 
aL(x) vector of activations that are output from the network, when x is input 

It holds:    required for averaging over training examples 
 
        We also need C to be a function of the output activations, which we have  
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The Backpropagation Algorithm 

the error δl
j of neuron j in layer l 

 

the error in the output layer  

 

s⊙t  denotes the elementwise product of the two vectors 

For the quadratic cost function, we have 

So we can easily compute: 
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The Backpropagation Algorithm 
An equation for the error δl in terms of the error in the next layer 
 
 

moves the error backward,  

first assessing it on l layer’s output, then to l’s weighted input via σ 

the rate of change of the cost with respect to any bias in the network 

 

 

the rate of change of the cost w.r.t. any weight in the network 
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The Backpropagation Algorithm 
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The Backpropagation Algorithm 

In other words: 

 

● We compute the error vectors δl backward,  

starting from the final layer.  

 

● The backward movement is a consequence of the fact  

that the cost is a function of outputs from the network. 

 

In practice, we usually combine backpropagation with 

stochastic gradient descent, in which we compute the 

gradient for many training examples. 
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Backpropagation: More intuitions 

• Every edge between two neurons in the network is 
associated with a rate factor, which is just the partial 
derivative of one neuron's activation with respect to the 
other neuron's activation. 

• The rate factor for a path is just the product of the rate 
factors along the path. 

• The total rate of change of C with respect to a weight in the 
network is just the sum of the rate factors of all paths from 
the initial weight to the final cost. 

• The backpropagation algorithm is providing a way of 
computing the sum over the rate factor for all these paths. 
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Backpropagation: More intuitions 

This change in turn, will cause changes in all the activations in the next layer. 

Given the change, overall:  

First, the change causes a small change 
in the activation of the j-th neuron in 
the l-th layer: 

… 
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Backpropagation: More intuitions 

Imagining a path  
all the way to C : 

Since the change propagates across all possible paths to affect C : 
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Backpropagation: More intuitions 

• We are computing the rate of change of C  
with respect to a weight in the network. 

• This is just the sum of the rate factors  
of all paths from that weight to the final cost. 

• The backpropagation algorithm computes  
the sum over the rate factor for all these paths. 

 



Deep Considerations … 
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The Universal Approximation Theorem 

• “A feed-forward network with a single hidden layer containing a 
finite number of neurons, can approximate continuous functions 
on compact subsets of Rn, under mild assumptions on the 
activation function.” 

• shown, e.g., for sigmoid functions (Cybenko, 1989) 

• Intuition: a network of perceptrons can simulate a circuit containing 
NAND gates. Since any boolean function can be implemented using 
NAND gates, it follows that perceptrons are universal computers!  

weights: -2  
biases= 3 
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The Universal Approximation Theorem 

• Implication 

• Simple networks can represent essentially any function. 

• Thus, in theory,  

• all we need is networks of perceptrons… 

• Unfortunately, this does not tell us anything on how to 
actually do the learning / computations…  

• in a sense, we just confirm that a network of perceptrons 
is a new type of NAND gate! 

• Practice + new theory shows that deep is good… 
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Why Deep NN? 

• First … what does “deep” mean? 
 

• Well, deep means more than two (hidden+output) layers! 
 

• So, strictly speaking, it is not “a new thing”! 
 

• Why “two”? With depth 2 we have a universal approximator. 
 

• Recent theoretical results show the power of “deep”. 
 

• Deep architectures can represent a function  
with exponentially fewer units! 
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Deep Learning and Deep Neural Networks 

▪ Why now (i.e., after 2010)? 

• more powerful CPUs + appearance of GPUs + big data 

• high-quality software (tensorflow, PyTorch, MXNet, …) 

• new theoretical results that suggest their power 

• A Spiral Effect 

• Deep NNs do well →  

• more and more people now get interested → 

• people get to learn how to tweak Deep NNs →  

• Deep NNs get even better in more domains →  

• [repeat] 
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Deep Neural Networks in a Nutshell 

input layer + number of hidden layers + output layer 

 

• Each unit's input: a weighted sum of outputs of units  
from previous layers (weights are on links between layers) 

• Units’ outputs: nonlinear transformation of weighted inputs  
by activation functions (tanh, logistic, rectified linear unit, …) 

• Compute error derivatives and backpropagate gradients  
from the output layer towards the input layer. 

• Update weights from gradients to optimize loss function. 

• Repeat until convergence. 
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Today 

• Convolutional Neural Networks 

• Trained Systems for Images 
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Plain MLPs for Images? 

• Problems 

– huge number of weights 

– spatial information is ignored 

– cannot account for translations 



Convolutional Neural Networks 
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Convolutional Neural Networks 

• Solution 

– convolution operations instead of matrix operations 

– divide the image into small overlapping patches 

– compare each patch against a template 

– templates (filters) are small (3x3, 4x4, …) 

– templates have a small weight matrix 

– translation invariance! 

 

– look for the relative locations of matches 

– good for character recognition 
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Convolutions in 1D 
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Convolutions in 2D 
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Convolution as Matrix Multiplication 
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Zero-Padding (same Convolution) 
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Strided Convolution  
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MIMO Convolutions 
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Convolutional Layers 
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Pooling Layers 

• Max pooling 

• Average pooling 

• Global average pooling 
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Normalization Layers 
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Convolutional NN for Classification 
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Convolutional NN for Classification 
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Example CNN Classification 



Trained Systems for Images 
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LeNet (Yann LeCun) 
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LeNet and AlexNet (Alex Krizhevsky) 
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AlexNet Results 
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GoogLeNet (Inception Block) 



M. G. Lagoudakis         TUC ECE, Machine Learning, Spring 2023       Page 23 

ResNet (Microsoft) 
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DenseNet 
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Object Detection (Anchor Boxes) 
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Image Segmentation 
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Encoder-Decoder 
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Semantic Segmentation 
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Human Pose Estimation 
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CNNs for Medical Imaging 
• BrainNet: developed based on TensorFlow, aims to train  

deep neural networks to segment GM (Gray Matter)  
and WM (White Matter) from brain MR images 

• LiviaNet: developed based on Theano, aims to train 3-D 
fully convolutional neural networks by using MR images to 
segment sub-cortical brain structures 

• DIGITS: developed to rapidly train accurate deep neural 
networks for  image segmentation, classification, and tissue 
detection tasks (e.g.  Alzheimer’s disease detection) 

• DeepMedic: developed based on Theano, aims to train  
multi-scale 3-D convolutional neural networks for brain  
lesion segmentation from  MR images  
(winner of the ISLES 2015 competition) 
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Today 

• Recurrent Neural Network (RNN) 

• Gated Recurrent Units (GRU) 

• Long Short Term Memory (LSTM) 

• Considerations 

• Attention 
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Recurrent Neural Network (RNN) 

• RNNs 

– map sequences to sequences using also internal state (memory) 

– instant output is not a function only of the instant input … 

– … but depends also on the hidden state …  

– … which is constantly updated over time 

• Applications 

– sequence generation 

– sequence classification 

– sequence translation 

– … 
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Types of RNNs 
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vec2seq (Sequence Generation) 

– D: size of the input vector 

– output: arbitrary-length sequence of vectors 

– C: size of each output vector 

– output vectors generated one at a time 

– output vectors are sampled 

– hidden states are deterministic 

– conditional generative model 

– variation: variational RNNs 
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vec2seq Applications 
• Language Modelling 

– no input! just generation of output 

• Language Modelling example 

– the githa some thong the time traveller held in his hand was a 
glittering metallic framework scarcely larger than a small clock 
and very delicately made there was ivory in it and the latter 
than s bettyre tat howhong s ie time thave ler simk you a 
dimensions le ghat dionthat shall travel indifferently in any 
direction of space and time as the driver determines … 

• Image Captioning 

– image (or an embedding of) as input 

– a textual description of the image content as output 
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vec2seq: Image Captioning Example 
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seq2vec (Sequence Classification) 

– D: size of each input vector 

– input: length-T sequence of vectors 

– C: size of the output vector 

– variation: bidirectional RNNs 

– application: classification of … 

– … text, music, speech, video, …  
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vec2vec (Sequence Translation) 

– D: size of each input vector 

– T, T’: length of input/output sequence 

– C: size of the output vector 

– T=T’  aligned case  
(dense sequence labeling) 
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vec2vec Deep RNN 
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vec2vec (Sequence Translation) 

– D: size of each input vector 

– T, T’: length of input/output sequence 

– C: size of the output vector 

– TT’  unaligned case  
(encoder-decoder architecture) 
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vec2vec Machine Translation 



Gated Recurrent Units (GRU) 
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Gated Recurrent Units (GRU) 
• Key idea 

– learn when to update the hidden state 

– selectively “remember” important info when first seen 

– learn when to reset the hidden state 

– thus, forget things that are no longer useful 
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GRU Illustrated 



Long Short Term Memory (LSTM) 
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Long Short Term Memory (LSTM) 
• Key idea 

– similar to GRU, but more sophisticated 

– augment the hidden states with memory cells 

 

– output gate 

– input gate 

– forget gate 
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LSTM Illustrated 



Considerations 
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Greedy Decoding 
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Examples 

– Viterbi: optimal, but expensive 

– beam search: heuristic, but cheap 
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Beam Search 
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1d CNNs for Sequence Classification 
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Causal 1d CNNs for Sequence Classification 



Attention 
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Attention 
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Attention with seq2seq 
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CNN, RNN, Attention 
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